Reweighted Spectral Partitioning Works

A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
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Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O (\/ﬁ) vertices so that every
connected component of G — S has at most %n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!
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Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O (‘/gn). Can be found in O(n) time, if a surface embedding
is provided.

Theorem (Kj,-minor-free Separator Theorem)

Kn-minor-free graph: Separator size O (h\/ﬁ) Can be found in O(n?) time, provided that h
is constant.




Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph




Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph

Theorem (k-ply d-dimensional ball-intersection Separator Theorem [MTTV97])

k-ply d-dimensional ball-intersection graph: Separator size O (dkinlf%). Can be found in

O(f(d) + nd?) time, for a function f, if the points are provided.

Theorem (Improved k-ply d-dimensional ball-intersection Separator Theorem [New,

Side-Result])

k-ply d-dimensional ball-intersection graph: Separator size O (\/min{d, log A}k%nk%). Can
be found in polynomial time, if the points are provided.
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Other Separator Theorems (3)

d-dimensional k-NN graph: For n points in the plane, add an edge to each point’s top
k-nearest neighbours.

Theorem (d-dimensional k-NN Separator Theorem [MTTV97])

1

d-dimensional k-NN graph: Separator size O (dkinlfﬁ). Can be found in O(f(d) + nd?)
time, for a function f, if the points are provided.

Theorem (Improved d-dimensional k-NN Separator Theorem [New, Side-Result])

d-dimensional k-NN graph with max degree A: Separator size O <w/min{d, log A}k% n1_5>.
Can be found in polynomial time, if the points are provided.
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No additional information!

In practice: Given graph, no specialized info. Want theoretically sound guarantees of small
separators.
Three broad approaches:

o Multiple algorithms: Only works for certain graph classes, time complexity might
depend on class.

e Approximation algorithm: Works for all graphs, but approximation ratio is worst-case.
@ One algorithm, multiple proofs: Unspecialized algorithm, extra proofs for special inputs.
This talk is about the third kind!

The algorithm we consider: Reweighted Spectral Partitioning.



Graph class This work Previous work
Genus-g O(min{(log g)/gn. log A+/gn}) O(min{(log g)+/&n, poly(A)/gn})
Kp-minor-free | O(min{log h, \/log A}(hlog hlog log h)v/n) O((log h)h+/n)
k-ply ball-int- 1/d ,1—-1/d 1/d 1-1/d
ersection in RY O(\logA - k*/“n ) O(+/logn-dk*'%n )
k—nearest—nei— e l/d l—l/d l/d 1-1/d
ghbour in R9 O(Vlog A - k7%n ) O(vlogn - dk™/n )

Reweighted spectral partitioning separator size guarantees (via this work)
vs. previous algorithms.
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Want small boundary to area ratio

For a set S C V, edge expansion of S is:

_ |E(S,59)]
4S) = e

For a set S C V, vertex expansion of S is:

_ IN(S) N S
U(S) = =g



Separators, Expansion, and Cuts

For a set S C V, edge expansion of S is:

[E(S, 59)
P(S) = ———F—+.
(5) S|
CJ rJ rJ
For a set S C V, vertex expansion of S is:
N(S)n S¢
u(s) = ML,

Known algorithm:
For induced subgraph H C G, find cut S with ¥(S) < &

Want small boundary to area ratio : 1
— can get balanced vertex separator of size O(an'~¢).
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Edge expansion ¢(G) := min|5|<g #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

2
O 2a(6) < 20(6)

algorithmic, generic!
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A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|§g (S):

Small = fast algorithms.

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < xa(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

Fact for planar graphs: ¢(G) < (/2.

n

y

A2(G)+Cheeger: ¢(S) <4/Ay/2  (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

Showed for planar graph, X\2(G) < %

a3

Now A2(G)+Cheeger = ¢(S) <

also in other

—~~

Similar results for many other classes
works).
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Edge expansion ¢(G) := min|s|gg
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¢(S):

Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22))
For a graph G with max degree A,

¥(G)?
log A
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From Spectral Partitioning to  Reweighted Spectral Partitioning

Edge expansion ¢(G) := min|s|<g »(S): Vertex expansion (G) := min‘5|<g ¥(S): Small

Small = fast algorithms. = fast algorithms.
Fiedler Value (\2): A poly-time Max Reweighted Spec Gap (7("): A poly-time
computable “spectral” quantity. computable quantity.

Theorem (Cheeger's inequality)

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22])
For a graph G with max degree A,

For a graph G with max degree A,

¢(G)?
20

< M(G) < 26(G) ¥(G)*

log A ~

<$Y(G) S 9(6).

Spectral partitioning algorithm:
Compute \o(G), obtain S with ¢(S) Reweighted spectral partitioning algorithm:
bounded. Compute v(")(G), obtain S with 1(S) bounded.
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Reweighted Spectral Partitioning

Theorem ( Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree A,

2
min{loi(g,)a(G)2} $97(6) S (6.

a(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G.
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Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).
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n

Graph class A <41 <

gmin{(log g)?,log A}
n
(hlog hlog log h)?
n
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Kp-minor-free
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Reweighted Spectral Partitioning

Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).

Graph class (M <~ <
P i 17 =~ Graph class A < ) <
Planar — K\ 2
- L 5 (d-dim) k-ply ball-intersection <n>
Genus.g gmin{(log g)*,log A}
n o\ 2
hlog hlog log h)2 (d—dlm) k-NN graph <>
Kp-minor-free (hlog Zg og h) n

E.g. G planar = +(M(G) <1 = ¢(S) < = reproduces planar separator theorem!

Sl



Intuition for ("(G)

For a graph G, define:
”y(d)(G)

f:V—RI
y:V—=R>q

subject to

Zvevy(V)

Teev 1B

> f(v)

veV
y(u) +y(v)

0

1f(u) = F(WI3 VuveE




Intuition for ("(G)

Definition
For a graph G, define: 5 )
(d) o : veVy v
YNG) = min S e
v ey OB
subject to Zf(v) = 0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius = /y(v).
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Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.



Intuition for ("(G)

Definition
For a graph G, define:
AD(G) = min 2wev (V) -
s Ty IFCITB
subject to Zf(v) = 0
veVv
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.



Intuition for ("(G)

Definition
For a graph G, define: > )
(d) — H veVy v
YNG) = min =
e T IF0IE
subject to Zf(v) =0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.

o Constraint: Adjacent balls must intersect.



Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

¢(G)2 < 7(1)(G) < y
min{log A, [a(G)]?} ~ min{log A, [ G)]?} ™

(M(G) S+W(G) S ¥(G).

Reminder: v(") is the poly-time computable quantity (it is an SDP).
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Theorem (Refined Cheeger-Style Inequality, expanded)
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Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

P(G)? < 7M(6) <
min{log A, [a(G)]?} ~ min{log A, [a(G)]?} ~

+(G) $vI(G) S ¥(6).

Lemma (0TZ22)
For a graph G,

¥(6)* S7(6) S ¥(6).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree A,

+YM(6) £vI(G) £+ (G) - log A.

Method: Don't change sphere radii, use random projection on centres.
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Note: For a vertex-weighted shortest-path metric (X, d) on G, a(G) < (X, d).
Ongoing follow-up work: This is now deterministic.
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Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).

Proof Step 1: Non-expansive for shortest-path metric = partially non-expansive for original
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Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).

Proof Step 1: Non-expansive for shortest-path metric = partially non-expansive for original
L, metric = adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound = normalizing denominator in objective only
goes up by O(a(G)?).
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Two kinds of upper bounds on v{")(G): Geometric and Combinatorial

Reminder: (" (G) small for a class of graphs = small sparse cuts 9(S).

Geometric Bounds on 7("(G)  Combinatorial Bounds on ~+(")(G)
Rich theory of circle packings! Rich theory of congestion bounds via
crossing numbers!
E.g., crossing number lemma:

m3

Cr(G) Z ﬁ

Either kind = ~(1)(G) < % for G planar.
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Geometric Bounds: Planar Case

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Donel

Use y(v) := 2 - rad(v)?,
f(v) := centre of disk on sphere.

Centroid at origin:

ZVEV f(V) =0

Touching circles (uv € E):

y(u) + y(v) > (rad(u) + rad(v))?
> [|f(u) = F(V)I3

Unit sphere: > o\ [[f(x)[3 = n

Area bound: > . y(v) S 1.



Geometric Bounds: Planar Case

Step 1: Planar circle packing theorem. Every planar

—n. 2
graph admits touching circles representation. Use y(v) := 2 rad(v)7,

f(v) := centre of disk on sphere.

Centroid at origin:

ZVEV f(V) = 6

Touching circles (uv € E):
y(u) + y(v) > (rad(u) + rad(v))?
> [|f(u) = F(V)I3

; i 2 _
Step 2: Stereographic projection: Put circle packing Unit sphere: 3, o [If(x)[3=n
onto unit sphere (centroid at origin). Area bound: 3, y(v) < 1.
Step 3: Total area of representation < area of unit
sphere (4) Result: Y,y Y(V) < 1
Sxev IFC)NE ™~ n

Donel



Combinatorial Bounds: Overview for Genus-g Graphs

conz(G) 2 Lg 25 (G) < (logg)? g
¢Strong duality iStrong duality
_ n° Cauchy-Schwarz w 2 N ( )
206)2 —(— ——— § sup dé(u,v)]" 2 — lo
( ) \/E w:VﬁRZO UVZEV [ G( )] g ( gg
[wll2<1
lMetric embedding ¢ Metric embedding Relaxation
e 1 Cauchy-Schwarz __; n?
Y6 2 — @,(6) 2 < (logg)*€

V&logg g(log g)?
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Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
https://arxiv.org/pdf/2506.01228

Lots more results in the paper!
o New separator theorems for some geometric graph classes.
o Other bounds on (",
@ A new bound on \, for genus-g graphs.
e Fixes for a couple proofs from previous papers.

Questions?
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