Reweighted Spectral Partitioning Works

A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
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Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O (\/ﬁ) vertices so that every
connected component of G — S has at most %n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!
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Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O (‘/gn). Can be found in O(n) time, if a surface embedding
is provided.

Theorem (Kj,-minor-free Separator Theorem)

Kn-minor-free graph: Separator size O (h\/ﬁ) Can be found in O(n?) time, provided that h
is constant.




Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (MTTV97)

Separator size O (dk% nl_%) :

Can be found in O(f(d) + nd?) time, for a function f, if the points are provided.




Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (', Side-Result)

Separator size O (\ /min{d, log A}k% nl_%> :

Can be found in polynomial time, if the points are provided.
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Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs
Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms

Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

This talk is about the third kind!
@ Move the difficulty from the algorithm to the proofs.
@ Implementable!

@ Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.



Results: Poly-time Separator Sizes

Graph class This work Previous work
Genus-g O(min{(log g)/gn. log A+/gn}) O(min{(log g)+/&n, poly(A)/gn})
Kp-minor-free | O(min{log h, \/log A}(hlog hlog log h)v/n) O((log h)h+/n)
k-ply ball-int- 1/d ,1—-1/d 1/d 1-1/d
ersection in RY O(\logA - k*/“n ) O(+/logn-dk*'%n )
k—nearest—nei— e l/d l—l/d l/d 1-1/d
ghbour in R9 O(Vlog A - k7%n ) O(vlogn - dk™/n )

Reweighted spectral partitioning separator size guarantees (via this work)
vs. previous algorithms.
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Separators, Expansion, and Cuts

For a set S C V, edge expansion of S is:

E(S, 5S¢
os) = IEE5,
CJ rJ rJ For a set S C V, vertex expansion of S is:
N(S)n S
u(s) = ML,
Known algorithm:

. [H]
Want small boundary to area ratio  — can get balanced vertex separator of size O(an'~¢
(Requires |S| < 7)

For induced subgraph H C G, find cut S with ¢(S) < 5=
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Edge expansion ¢(G) := min|5|<g #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

2
O 2a(6) < 20(6)

algorithmic, generic!
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computable “spectral” quantity.
First specialized proof:

Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

Theorem (Cheeger's inequality)

For a graph G with max degree A,
A

) G planar = X(G) S 5
AL < x(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.
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A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|§g (S):

Small = fast algorithms.

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < xa(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

Fact for planar graphs: ¢(G) < (/2.

n

y

A2(G)+Cheeger: ¢(S) <4/Ay/2  (weak).

First specialized proof:

Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar = X(G) < &

Now A2(G)+Cheeger = ¢(S) <

a3

also in other

—~~

Similar results for many other classes
works).



From Spectral Partitioning to  Reweighted Spectral Partitioning
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bounded.
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Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,
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bounded.
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Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
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From Spectral Partitioning  to

¢(S):

Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22))
For a graph G with max degree A,

¥(G)?
log A

7M(6) S 9(6).




From Spectral Partitioning to  Reweighted Spectral Partitioning

Edge expansion ¢(G) := min|s|<g »(S): Vertex expansion (G) := min‘5|<g ¥(S): Small

Small = fast algorithms. = fast algorithms.
Fiedler Value (\2): A poly-time Max Reweighted Spec Gap (7("): A poly-time
computable “spectral” quantity. computable quantity.

Theorem (Cheeger's inequality)

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22])
For a graph G with max degree A,

For a graph G with max degree A,

¢(G)?
20

< M(G) < 26(G) ¥(G)*

log A ~

<$Y(G) S 9(6).

Spectral partitioning algorithm:
Compute \o(G), obtain S with ¢(S) Reweighted spectral partitioning algorithm:
bounded. Compute v(")(G), obtain S with 1(S) bounded.
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Reweighted Spectral Partitioning

Theorem ( Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree A,

2
min{loi(g,)a(G)2} $97(6) S (6.

a(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G.
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Theorem ( Cheeger-Style Inequality [New])
For a graph G with n vertices and maximum degree A,
G)? n
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Reweighted Spectral Partitioning

Theorem ( Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree A,

2
min{loﬁ(AG,)a(GV} $97(6) S (6.

a(G) is the w L
metries-over—G- intrinsic dimension of G.
E.g. G planar = «a(G) € O(1).




Reweighted Spectral Partitioning

Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).
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Planar —
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Graph class A <41 <

gmin{(log g)?,log A}
n
(hlog hlog log h)?
n

Genus-g

Kp-minor-free
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Reweighted Spectral Partitioning

Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).

Graph class (M <~ <
P i 17 =~ Graph class A < ) <
Planar — K\ 2
- L 5 (d-dim) k-ply ball-intersection <n>
Genus.g gmin{(log g)*,log A}
n o\ 2
hlog hlog log h)2 (d—dlm) k-NN graph <>
Kp-minor-free (hlog Zg og h) n

E.g. G planar = +(M(G) <1 = ¢(S) < = reproduces planar separator theorem!

Sl



Intuition for ("(G)

For a graph G, define:
”y(d)(G)

f:V—RI
y:V—=R>q

subject to

Zvevy(V)

Teev 1B

> f(v)

veV
y(u) +y(v)

0

1f(u) = F(WI3 VuveE




Intuition for ("(G)

Definition
For a graph G, define: 5 )
(d) o : veVy v
YNG) = min S e
v ey OB
subject to Zf(v) = 0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius = /y(v).
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Intuition for ("(G)

Definition
For a graph G, define:
AD(G) = min 2wev (V) -
s Ty IFCITB
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veVv
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:
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Intuition for ("(G)

Definition
For a graph G, define: > )
(d) — H veVy v
YNG) = min =
e T IF0IE
subject to Zf(v) =0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.

o Constraint: Adjacent balls must intersect.



Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

¢(G)2 < 7(1)(G) < y
min{log A, [a(G)]?} ~ min{log A, [ G)]?} ™

(M(G) S+W(G) S ¥(G).

Reminder: v(") is the poly-time computable quantity (it is an SDP).
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Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

P(G)? +Y1(6) (n)
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Lemma (0TZ22)
For a graph G,
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Lemma (0TZ22)
For a graph G,
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For a graph G with maximum degree A,
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Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

P(G)? < 7M(6) <
min{log A, [a(G)]?} ~ min{log A, [a(G)]?} ~

+(G) $vI(G) S ¥(6).

Lemma (0TZ22)
For a graph G,

¥(6)* S7(6) S ¥(6).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree A,

+YM(6) £vI(G) £+ (G) - log A.

Method: Don't change sphere radii, use random projection on centres.
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Note: For a vertex-weighted shortest-path metric (X, d) on G, a(G) < (X, d).
Ongoing follow-up work: This is now deterministic.
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Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).
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Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).

Proof Step 1: Non-expansive for shortest-path metric = partially non-expansive for original
L, metric = adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound = normalizing denominator in objective only
goes up by O(a(G)?).
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Two kinds of upper bounds on v{")(G): Geometric and Combinatorial

Reminder: (" (G) small for a class of graphs = small sparse cuts 9(S).

Geometric Bounds on +(")(G)
Rich theory of circle packings!

Either kind = ~(1)(G) < % for G planar.

Combinatorial Bounds on 7("(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

m3

cr(G) 2 =
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Geometric Bounds: Planar Case

Construction from Spielman-Teng: .
Bounding 7(3):

Step 1: Planar circle packing theorem. Every planar Use y(v) := 2 - rad(v)?
graph admits touching circles representation. f(v) := centre of disk on sphere.

Centroid at origin:
Svevf(v)=0

Touching circles (uv € E):

y(u) +y(v) > (rad(u) + rad(v))?
> [[f(u) = F(v)II3

Unit sphere: - [[f(x)I3 =n

Step 2: Stereographic projection: Put circle packing Area bound: > .\, y(v) S 1.
onto unit sphere (centroid at origin).
Result: 2vevy (V)

Step 3: Total area of representation < area of unit = /2
- f
sphere (4) 2xev IF(II2

N

1
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Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.

o Will form new graph H.
@ Vertices of H: Disjoint connected subgraphs of G.

e Edges of H: Edge (optionally) exists in G
between the subgraphs.

@ This is a minor. How to use:
@ Uniform if subgraphs form a partition with © Start with H.

equal-sized parts. @ Construct G that has H as
@ Shallow if subgraphs have bounded diameter. uniform shallow minor.

@ Bound /(1)(G).
@ Relate y()(H) and v()(G).
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Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

© Reduce to triangulated constant-degree case
[uniform shallow minors].

© Reduce to highly “refined” graph
[adapt argument of Kelner].

@ Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: 4(1(G) < gle&

n



Combinatorial Bounds: Overview for Genus-g Graphs
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Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
https://arxiv.org/pdf/2506.01228

Lots more results in the paper!
o New separator theorems for some geometric graph classes.
o Other bounds on (",
@ A new bound on \, for genus-g graphs.
e Fixes for a couple proofs from previous papers.

Questions?
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