
Reweighted Spectral Partitioning Works
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O
(√

n
)
vertices so that every

connected component of G − S has at most 2
3n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O
(√

n
)
vertices so that every

connected component of G − S has at most 2
3n vertices.

S can be found in O(n) time.

Small separator = many fast algorithms!

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O
(√

n
)
vertices so that every

connected component of G − S has at most 2
3n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O
(√

n
)
vertices so that every

connected component of G − S has at most 2
3n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
. Can be found in O(n) time, if a surface embedding

is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
. Can be found in O(n2) time, provided that h

is constant.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
. Can be found in O(n) time, if a surface embedding

is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
. Can be found in O(n2) time, provided that h

is constant.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
.

Can be found in O(n) time, if a surface embedding
is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
. Can be found in O(n2) time, provided that h

is constant.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
. Can be found in O(n) time, if a surface embedding

is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
. Can be found in O(n2) time, provided that h

is constant.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
. Can be found in O(n) time, if a surface embedding

is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
.

Can be found in O(n2) time, provided that h
is constant.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
. Can be found in O(n) time, if a surface embedding

is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
. Can be found in O(n2) time, provided that h

is constant.

Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (MTTV97)

Separator size O
(
dk

1
d n1−

1
d

)
.

Can be found in O(f (d) + nd2) time, for a function f , if the points are provided.

Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (New, Side-Result)

Separator size O
(√

min{d , log∆}k
1
d n1−

1
d

)
.

Can be found in polynomial time, if the points are provided.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms

Approximation algorithms One algorithm, many proofs

Strong per-class guarantees

Per-instance guarantees Strong per-class guarantees

Complex algorithms

Medium-complex algos Simple algorithms

Complex proofs

Medium-complex proofs Complex proofs

Slow

Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms

One algorithm, many proofs

Strong per-class guarantees Per-instance guarantees

Strong per-class guarantees

Complex algorithms Medium-complex algos

Simple algorithms

Complex proofs Medium-complex proofs

Complex proofs

Slow Fast

Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Results: Poly-time Separator Sizes

Graph class This work Previous work

Genus-g O(min{(log g)2√gn, log∆
√

gn}) O(min{(log g)
√

gn, poly(∆)
√
gn})

Kh-minor-free O(min{log h,
√
log∆}(h log h log log h)

√
n) O((log h)h

√
n)

k-ply ball-int-
ersection in Rd O(

√
log∆ · k1/dn1−1/d) O(

√
log n · dk1/dn1−1/d)

k-nearest-nei-
ghbour in Rd O(

√
log∆ · k1/dn1−1/d) O(

√
log n · dk1/dn1−1/d)

Reweighted spectral partitioning separator size guarantees (via this work)
vs. previous algorithms.

Separators, Expansion, and Cuts

Want small boundary to area ratio

For a set S ⊂ V , edge expansion of S is:

ϕ(S) :=
|E (S ,Sc)|
|S |

.

For a set S ⊂ V , vertex expansion of S is:

ψ(S) :=
|N(S) ∩ Sc |
|S |

.

Known algorithm:
For induced subgraph H ⊂ G , find cut S with ψ(S) ≤ α

|H|ε

=⇒ can get balanced vertex separator of size O(αn1−ε).
(Requires |S | ≤ n

2)

Separators, Expansion, and Cuts

Want small boundary to area ratio

For a set S ⊂ V , edge expansion of S is:

ϕ(S) :=
|E (S ,Sc)|
|S |

.

For a set S ⊂ V , vertex expansion of S is:

ψ(S) :=
|N(S) ∩ Sc |
|S |

.

Known algorithm:
For induced subgraph H ⊂ G , find cut S with ψ(S) ≤ α

|H|ε

=⇒ can get balanced vertex separator of size O(αn1−ε).
(Requires |S | ≤ n

2)

Separators, Expansion, and Cuts

Want small boundary to area ratio

For a set S ⊂ V , edge expansion of S is:

ϕ(S) :=
|E (S , Sc)|
|S |

.

For a set S ⊂ V , vertex expansion of S is:

ψ(S) :=
|N(S) ∩ Sc |
|S |

.

Known algorithm:
For induced subgraph H ⊂ G , find cut S with ψ(S) ≤ α

|H|ε

=⇒ can get balanced vertex separator of size O(αn1−ε).
(Requires |S | ≤ n

2)

Separators, Expansion, and Cuts

Want small boundary to area ratio

For a set S ⊂ V , edge expansion of S is:

ϕ(S) :=
|E (S , Sc)|
|S |

.

For a set S ⊂ V , vertex expansion of S is:

ψ(S) :=
|N(S) ∩ Sc |
|S |

.

Known algorithm:
For induced subgraph H ⊂ G , find cut S with ψ(S) ≤ α

|H|ε

=⇒ can get balanced vertex separator of size O(αn1−ε).
(Requires |S | ≤ n

2)

Separators, Expansion, and Cuts

Want small boundary to area ratio

For a set S ⊂ V , edge expansion of S is:

ϕ(S) :=
|E (S , Sc)|
|S |

.

For a set S ⊂ V , vertex expansion of S is:

ψ(S) :=
|N(S) ∩ Sc |
|S |

.

Known algorithm:
For induced subgraph H ⊂ G , find cut S with ψ(S) ≤ α

|H|ε

=⇒ can get balanced vertex separator of size O(αn1−ε).
(Requires |S | ≤ n

2)

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

hard to compute, want to approximate

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

easy to compute

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤←λ2(G) ≤ 2ϕ(G)

algorithmic, generic!

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G) ≲
√

∆
n .

λ2(G)+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G) ≲ ∆
n

Now λ2(G)+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲ γ(n)(G) ≲ ψ(G).

hard to compute, want to approximate

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲ γ(n)(G) ≲ ψ(G).

hard to compute, want to approximate

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲ γ(n)(G) ≲ ψ(G).

hard to compute, want to approximate

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲ γ(n)(G) ≲ ψ(G).

hard to compute, want to approximate

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲ γ(n)(G) ≲ ψ(G).

easy to compute

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲←γ(n)(G) ≲ ψ(G).

algorithmic, generic!

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G)2

2∆
≤ λ2(G) ≤ 2ϕ(G)

Spectral partitioning algorithm:
Compute λ2(G), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G)2

log∆
≲ γ(n)(G) ≲ ψ(G).

Reweighted spectral partitioning algorithm:
Compute γ(n)(G), obtain S with ψ(S) bounded.

Refining Reweighted Spectral Partitioning

Theorem (Refined Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree ∆,
ψ(G)2

min{log∆, α(G)2}
≲ γ(n)(G) ≲ ψ(G).

α(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G .
E.g. G planar =⇒ α(G) ∈ O(1).

Refining Reweighted Spectral Partitioning

Theorem (Refined Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree ∆,
ψ(G)2

min{log∆, α(G)2}
≲ γ(n)(G) ≲ ψ(G).

α(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G .

E.g. G planar =⇒ α(G) ∈ O(1).

Refining Reweighted Spectral Partitioning

Theorem (Refined Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree ∆,
ψ(G)2

min{log∆, α(G)2}
≲ γ(n)(G) ≲ ψ(G).

α(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G . intrinsic dimension of G .

E.g. G planar =⇒ α(G) ∈ O(1).

Refining Reweighted Spectral Partitioning

Theorem (Refined Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree ∆,
ψ(G)2

min{log∆, α(G)2}
≲ γ(n)(G) ≲ ψ(G).

α(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G . intrinsic dimension of G .
E.g. G planar =⇒ α(G) ∈ O(1).

Reweighted Spectral Partitioning Works

Reweighted spectral partitioning works: Direct class-specific upper bounds for γ(n)(G).

Graph class γ(n) ≤ γ(1) ≲

Planar
1

n

Genus-g
g min{(log g)2, log∆}

n

Kh-minor-free
(h log h log log h)2

n

Graph class γ(n) ≤ γ(d) ≲

(d-dim) k-ply ball-intersection

(
k

n

) 2
d

(d-dim) k-NN graph

(
k

n

) 2
d

E.g. G planar =⇒ γ(n)(G) ≲ 1
n =⇒ ψ(S) ≲ 1√

n
=⇒ reproduces planar separator theorem!

Reweighted Spectral Partitioning Works

Reweighted spectral partitioning works: Direct class-specific upper bounds for γ(n)(G).

Graph class γ(n) ≤ γ(1) ≲

Planar
1

n

Genus-g
g min{(log g)2, log∆}

n

Kh-minor-free
(h log h log log h)2

n

Graph class γ(n) ≤ γ(d) ≲

(d-dim) k-ply ball-intersection

(
k

n

) 2
d

(d-dim) k-NN graph

(
k

n

) 2
d

E.g. G planar =⇒ γ(n)(G) ≲ 1
n =⇒ ψ(S) ≲ 1√

n
=⇒ reproduces planar separator theorem!

Reweighted Spectral Partitioning Works

Reweighted spectral partitioning works: Direct class-specific upper bounds for γ(n)(G).

Graph class γ(n) ≤ γ(1) ≲

Planar
1

n

Genus-g
g min{(log g)2, log∆}

n

Kh-minor-free
(h log h log log h)2

n

Graph class γ(n) ≤ γ(d) ≲

(d-dim) k-ply ball-intersection

(
k

n

) 2
d

(d-dim) k-NN graph

(
k

n

) 2
d

E.g. G planar =⇒ γ(n)(G) ≲ 1
n =⇒ ψ(S) ≲ 1√

n
=⇒ reproduces planar separator theorem!

Intuition for γ(n)(G)

Definition

For a graph G , define:

γ(d)(G) := min
f :V→Rd

y :V→R≥0

∑
v∈V y(v)∑

x∈V ||f (x)||22

subject to
∑
v∈V

f (v) = 0

y(u) + y(v) ≥ ||f (u)− f (v)||22 ∀uv ∈ E

Loose interpretation:

For v ∈ V : Create a ball in Rd centred at f (v),
radius ≈

√
y(v).

Minimize sum of squared radii under normalization
constraints.

Constraint: Adjacent balls must intersect.

Intuition for γ(n)(G)

Definition

For a graph G , define:

γ(d)(G) := min
f :V→Rd

y :V→R≥0

∑
v∈V y(v)∑

x∈V ||f (x)||22

subject to
∑
v∈V

f (v) = 0

y(u) + y(v) ≥ ||f (u)− f (v)||22 ∀uv ∈ E

Loose interpretation:

For v ∈ V : Create a ball in Rd centred at f (v),
radius ≈

√
y(v).

Minimize sum of squared radii under normalization
constraints.

Constraint: Adjacent balls must intersect.

Intuition for γ(n)(G)

Definition

For a graph G , define:

γ(d)(G) := min
f :V→Rd

y :V→R≥0

∑
v∈V y(v)∑

x∈V ||f (x)||22

subject to
∑
v∈V

f (v) = 0

y(u) + y(v) ≥ ||f (u)− f (v)||22 ∀uv ∈ E

Loose interpretation:

For v ∈ V : Create a ball in Rd centred at f (v),
radius ≈

√
y(v).

Minimize sum of squared radii under normalization
constraints.

Constraint: Adjacent balls must intersect.

Intuition for γ(n)(G)

Definition

For a graph G , define:

γ(d)(G) := min
f :V→Rd

y :V→R≥0

∑
v∈V y(v)∑

x∈V ||f (x)||22

subject to
∑
v∈V

f (v) = 0

y(u) + y(v) ≥ ||f (u)− f (v)||22 ∀uv ∈ E

Loose interpretation:

For v ∈ V : Create a ball in Rd centred at f (v),
radius ≈

√
y(v).

Minimize sum of squared radii under normalization
constraints.

Constraint: Adjacent balls must intersect.

Intuition for γ(n)(G)

Definition

For a graph G , define:

γ(d)(G) := min
f :V→Rd

y :V→R≥0

∑
v∈V y(v)∑

x∈V ||f (x)||22

subject to
∑
v∈V

f (v) = 0

y(u) + y(v) ≥ ||f (u)− f (v)||22 ∀uv ∈ E

Loose interpretation:

For v ∈ V : Create a ball in Rd centred at f (v),
radius ≈

√
y(v).

Minimize sum of squared radii under normalization
constraints.

Constraint: Adjacent balls must intersect.

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree ∆,

ψ(G)2

min{log∆, [α(G)]2}
≲

γ(1)(G)

min{log∆, [α(G)]2}
≲ γ(n)(G) ≲ γ(1)(G) ≲ ψ(G).

Reminder: γ(n) is the poly-time computable quantity (it is an SDP).

Lemma (OTZ22)

For a graph G,
ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · log∆.

Method: Don’t change sphere radii, use random projection on centres.

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree ∆,

ψ(G)2

min{log∆, [α(G)]2}
≲

γ(1)(G)

min{log∆, [α(G)]2}
≲ γ(n)(G) ≲ γ(1)(G) ≲ ψ(G).

Lemma (OTZ22)

For a graph G,
ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · log∆.

Method: Don’t change sphere radii, use random projection on centres.

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree ∆,

ψ(G)2

min{log∆, [α(G)]2}
≲

γ(1)(G)

min{log∆, [α(G)]2}
≲ γ(n)(G) ≲ γ(1)(G) ≲ ψ(G).

Lemma (OTZ22)

For a graph G,
ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · log∆.

Method: Don’t change sphere radii, use random projection on centres.

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree ∆,

ψ(G)2

min{log∆, [α(G)]2}
≲

γ(1)(G)

min{log∆, [α(G)]2}
≲ γ(n)(G) ≲ γ(1)(G) ≲ ψ(G).

Lemma (OTZ22)

For a graph G,
ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · log∆.

Method: Don’t change sphere radii, use random projection on centres.

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10)

For a metric space (X , d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(α(X , d)2).

Note: For a vertex-weighted shortest-path metric (X , d) on G , α(G) ≤ α(X , d).
Ongoing follow-up work: This is now deterministic.
Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!

Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10)

For a metric space (X , d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(α(X , d)2).

Note: For a vertex-weighted shortest-path metric (X , d) on G , α(G) ≤ α(X , d).
Ongoing follow-up work: This is now deterministic.
Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10)

For a metric space (X , d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(α(X , d)2).

Note: For a vertex-weighted shortest-path metric (X , d) on G , α(G) ≤ α(X , d).
Ongoing follow-up work: This is now deterministic.
Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10)

For a metric space (X , d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(α(X , d)2).

Note: For a vertex-weighted shortest-path metric (X , d) on G , α(G) ≤ α(X , d).

Ongoing follow-up work: This is now deterministic.
Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10)

For a metric space (X , d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(α(X , d)2).

Note: For a vertex-weighted shortest-path metric (X , d) on G , α(G) ≤ α(X , d).
Ongoing follow-up work: This is now deterministic.

Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights ω : V → R≥0, a deterministic algorithm can compute a
non-expansive embedding of dω into the line with average 2-distortion O(α(G)2).

Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights ω : V → R≥0, a deterministic algorithm can compute a
non-expansive embedding of dω into the line with average 2-distortion O(α(G)2).

Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G) ≲ γ(1)(G) ≲ γ(n)(G) · α(G)2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights ω : V → R≥0, a deterministic algorithm can compute a
non-expansive embedding of dω into the line with average 2-distortion O(α(G)2).

Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G)2).

Two kinds of upper bounds on γ(n)(G): Geometric and Combinatorial

Reminder: γ(n)(G) small for a class of graphs =⇒ small sparse cuts ψ(S).

Geometric Bounds on γ(n)(G)
Rich theory of circle packings!

Combinatorial Bounds on γ(n)(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

cr(G) ≳
m3

n2
.

Either kind =⇒ γ(1)(G) ≲ 1
n for G planar.

Two kinds of upper bounds on γ(n)(G): Geometric and Combinatorial

Reminder: γ(n)(G) small for a class of graphs =⇒ small sparse cuts ψ(S).

Geometric Bounds on γ(n)(G)
Rich theory of circle packings!

Combinatorial Bounds on γ(n)(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

cr(G) ≳
m3

n2
.

Either kind =⇒ γ(1)(G) ≲ 1
n for G planar.

Two kinds of upper bounds on γ(n)(G): Geometric and Combinatorial

Reminder: γ(n)(G) small for a class of graphs =⇒ small sparse cuts ψ(S).

Geometric Bounds on γ(n)(G)
Rich theory of circle packings!

Combinatorial Bounds on γ(n)(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

cr(G) ≳
m3

n2
.

Either kind =⇒ γ(1)(G) ≲ 1
n for G planar.

Two kinds of upper bounds on γ(n)(G): Geometric and Combinatorial

Reminder: γ(n)(G) small for a class of graphs =⇒ small sparse cuts ψ(S).

Geometric Bounds on γ(n)(G)
Rich theory of circle packings!

Combinatorial Bounds on γ(n)(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

cr(G) ≳
m3

n2
.

Either kind =⇒ γ(1)(G) ≲ 1
n for G planar.

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:

1 Start with H.

2 Construct G that has H as
uniform shallow minor.

3 Bound γ(1)(G).

4 Relate γ(1)(H) and γ(1)(G).

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:

1 Start with H.

2 Construct G that has H as
uniform shallow minor.

3 Bound γ(1)(G).

4 Relate γ(1)(H) and γ(1)(G).

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:

1 Start with H.

2 Construct G that has H as
uniform shallow minor.

3 Bound γ(1)(G).

4 Relate γ(1)(H) and γ(1)(G).

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:

1 Start with H.

2 Construct G that has H as
uniform shallow minor.

3 Bound γ(1)(G).

4 Relate γ(1)(H) and γ(1)(G).

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:

1 Start with H.

2 Construct G that has H as
uniform shallow minor.

3 Bound γ(1)(G).

4 Relate γ(1)(H) and γ(1)(G).

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G) ≲ g log∆
n

∆ = 10

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G) ≲ g log∆
n

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G) ≲ g log∆
n

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G) ≲ g log∆
n

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G) ≲ g log∆
n

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G) ≲ g log∆
n

Combinatorial Bounds: Overview for Genus-g Graphs

crg (Kn) ≳
n4

g

con∗2 (G) ≳
n2

√
g

con2(G) ≳
n2

√
g

λ∗
2 (G) ≲ (log g)2

g

n

s2(G) ≳
n2

√
g

sup
ω:V→R≥0

||ω||2≤1

∑
u,v∈V

[dω
G (u, v)]

2 ≳
n2

g
γ(n)(G) ≲ (log g)2

g

n

Q
(1)
1 (G) ≳

1
√
g log g

Q
(1)
2 (G) ≳

n2

g(log g)2
γ(1)(G) ≲ (log g)2

g

n

Integrality gap

Strong duality

Metric embedding

Cauchy-Schwarz

Cauchy-Schwarz

Metric embedding

Strong duality

Relaxation

BLR10

BDX04
Roch05
OTZ22

Combinatorial Bounds: Overview for Genus-g Graphs

crg (Kn) ≳
n4

g

con∗2 (G) ≳
n2

√
g

con2(G) ≳
n2

√
g

λ∗
2 (G) ≲ (log g)2

g

n

s2(G) ≳
n2

√
g

sup
ω:V→R≥0

||ω||2≤1

∑
u,v∈V

[dω
G (u, v)]

2 ≳
n2

g
γ(n)(G) ≲ (log g)2

g

n

Q
(1)
1 (G) ≳

1
√
g log g

Q
(1)
2 (G) ≳

n2

g(log g)2
γ(1)(G) ≲ (log g)2

g

n

Integrality gap

Strong duality

Metric embedding

Cauchy-Schwarz

Cauchy-Schwarz

Metric embedding

Strong duality

Relaxation

BLR10

BDX04
Roch05
OTZ22

Fin

Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson

https://arxiv.org/pdf/2506.01228

Lots more results in the paper!

New separator theorems for some geometric graph classes.

Other bounds on γ(n).

A new bound on λ2 for genus-g graphs.

Fixes for a couple proofs from previous papers.

Questions?

https://arxiv.org/pdf/2506.01228

Fin

Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson

https://arxiv.org/pdf/2506.01228

Lots more results in the paper!
New separator theorems for some geometric graph classes.

Other bounds on γ(n).

A new bound on λ2 for genus-g graphs.

Fixes for a couple proofs from previous papers.

Questions?

https://arxiv.org/pdf/2506.01228

Fin

Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson

https://arxiv.org/pdf/2506.01228

Lots more results in the paper!
New separator theorems for some geometric graph classes.

Other bounds on γ(n).

A new bound on λ2 for genus-g graphs.

Fixes for a couple proofs from previous papers.

Questions?

https://arxiv.org/pdf/2506.01228

