Reweighted Spectral Partitioning Works

A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O (\/ﬁ) vertices so that every
connected component of G — S has at most %n vertices.

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O (\/ﬁ) vertices so that every
connected component of G — S has at most %n vertices. S can be found in O(n) time.

Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O (\/ﬁ) vertices so that every
connected component of G — S has at most %n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

D

-

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O (,/gn).

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O (,/gn). Can be found in O(n) time, if a surface embedding
is provided.

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O (‘/gn). Can be found in O(n) time, if a surface embedding
is provided.

Theorem (Kj,-minor-free Separator Theorem)

Kn-minor-free graph: Separator size O (h\/ﬁ)

Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O (‘/gn). Can be found in O(n) time, if a surface embedding
is provided.

Theorem (Kj,-minor-free Separator Theorem)

Kn-minor-free graph: Separator size O (h\/ﬁ) Can be found in O(n?) time, provided that h
is constant.

Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (MTTV97)

Separator size O (dk% nl_%) :

Can be found in O(f(d) + nd?) time, for a function f, if the points are provided.

Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (', Side-Result)

Separator size O (\ /min{d, log A}k% nl_%> :

Can be found in polynomial time, if the points are provided.

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms
Strong per-class guarantees
Complex algorithms
Complex proofs

Slow

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms
Strong per-class guarantees | Per-instance guarantees
Complex algorithms Medium-complex algos
Complex proofs Medium-complex proofs
Slow Fast

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs

Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs
Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms

Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

This talk is about the third kind!

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs
Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms

Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

This talk is about the third kind!
@ Move the difficulty from the algorithm to the proofs.

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs
Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms

Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

This talk is about the third kind!
@ Move the difficulty from the algorithm to the proofs.
@ Implementable!

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs
Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms

Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

This talk is about the third kind!
@ Move the difficulty from the algorithm to the proofs.
@ Implementable!

@ Fast and strong per-class guarantees.

Generic Algorithms with Many Proofs

In practice: Given graph, don't know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms | Approximation algorithms | One algorithm, many proofs
Strong per-class guarantees | Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms

Complex proofs Medium-complex proofs Complex proofs

Slow Fast Fast

This talk is about the third kind!
@ Move the difficulty from the algorithm to the proofs.
@ Implementable!

@ Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.

Results: Poly-time Separator Sizes

Graph class This work Previous work
Genus-g O(min{(log g)/gn. log A+/gn}) O(min{(log g)+/&n, poly(A)/gn})
Kp-minor-free | O(min{log h, \/log A}(hlog hlog log h)v/n) O((log h)h+/n)
k-ply ball-int- 1/d ,1—-1/d 1/d 1-1/d
ersection in RY O(\logA - k*/“n) O(+/logn-dk*'%n)
k—nearest—nei— e l/d l—l/d l/d 1-1/d
ghbour in R9 O(Vlog A - k7%n) O(vlogn - dk™/n)

Reweighted spectral partitioning separator size guarantees (via this work)
vs. previous algorithms.

Separators, Expansion, and Cuts

Separators, Expansion, and Cuts

Want small boundary to area ratio

Separators, Expansion, and Cuts

For a set S C V, edge expansion of S is:

_ 1E(5,59)]
8S) = e

Want small boundary to area ratio

Separators, Expansion, and Cuts

For a set S C V, edge expansion of S is:

[E(S,59)
o(S) = .
(5) S|
CJ fJ rJ For a set S C V, vertex expansion of S is:
N(S)n S¢
u(s) = ML,

Want small boundary to area ratio

Separators, Expansion, and Cuts

For a set S C V, edge expansion of S is:

E(S, 5S¢
os) = IEE5,
CJ rJ rJ For a set S C V, vertex expansion of S is:
N(S)n S
u(s) = ML,
Known algorithm:

. [H]
Want small boundary to area ratio — can get balanced vertex separator of size O(an'~¢
(Requires |S| < 7)

For induced subgraph H C G, find cut S with ¢(S) < 5=

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g (S):
Small = fast algorithms.

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g (S):
Small = fast algorithms.

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < xa(6) < 26(6)

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

#i)z < Xo(G) < 2¢(G)

hard to compute, want to approximate

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

% < A(G) < 26(G)

easy to compute

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

2
O 2a(6) < 20(6)

algorithmic, generic!

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g (S):
Small = fast algorithms.

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < xa(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g (S):
Small = fast algorithms.

Fact for planar graphs: ¢(G) < %.

A2(G)+Cheeger: ¢(S) <4/Ay/2 (weak).

y

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < xa(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := mi”|5|s§ (S): et for o] e 0(G) < 1/
act for planar graphs: Sh/ =

Small = fast algorithms. n

y

Fiedler Value ()): A poly-time A2(G)+Cheeger: ¢(S) S (/Ay/ 5 (weak).

computable “spectral” quantity.
First specialized proof:

Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

Theorem (Cheeger's inequality)

For a graph G with max degree A,
A

) G planar = X(G) S 5
AL < x(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|<g (S):
Small = fast algorithms.

Fact for planar graphs: ¢(G) < (/2.

n

y

Fiedler Value ()): A poly-time A2(G)+Cheeger: ¢(S) S (/Ay/ 5 (weak).

computable “spectral” quantity.
First specialized proof:

Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

Theorem (Cheeger's inequality)

For a graph G with max degree A,
G planar = X(G) < &
A6Y 5,(6) < 26(6)
24 Now A2(G)+Cheeger = ¢(S) <

§‘ NIw

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

A Related Example: Spectral Partitioning of Graphs

Edge expansion ¢(G) := min|5|§g (S):

Small = fast algorithms.

Fiedler Value ()\;): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < xa(6) < 26(6)

Spectral partitioning algorithm:
Compute Az(G), obtain S with ¢(S)
bounded.

Fact for planar graphs: ¢(G) < (/2.

n

y

A2(G)+Cheeger: ¢(S) <4/Ay/2 (weak).

First specialized proof:

Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar = X(G) < &

Now A2(G)+Cheeger = ¢(S) <

a3

also in other

—~~

Similar results for many other classes
works).

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ¢(G) := minms% #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

From Spectral Partitioning to

Reweighted Spectral Partitioning

Edge expansion ¢(G) := min|s|gg #(S):
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Vertex expansion 1(G) := min\5|§§ ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

From Spectral Partitioning to

¢(S):

Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22))
For a graph G with max degree A,

»(G)?

m S ’Y(")(G) S ¥(G).

From Spectral Partitioning to

¢(S):

Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22))
For a graph G with max degree A,

$(G)? _
logA ™~

7"(6) S 9(6).

hard to compute, want to approximate

From Spectral Partitioning to

¢(S):

Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22))
For a graph G with max degree A,

oga S77(6) SU(6).

easy to compute

From Spectral Partitioning to

¢(S):

Edge expansion ¢(G) := min|s|gg
Small = fast algorithms.

Fiedler Value (\2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger's inequality)

For a graph G with max degree A,

AP < x2(6) < 26(6)

Spectral partitioning algorithm:
Compute A\2(G), obtain S with ¢(S)
bounded.

Reweighted Spectral Partitioning

Vertex expansion 1(G) := minmS% ¥(S): Small
= fast algorithms.

Max Reweighted Spec Gap (7("): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22))
For a graph G with max degree A,

¥(G)?
log A

7M(6) S 9(6).

From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ¢(G) := min|s|<g »(S): Vertex expansion (G) := min‘5|<g ¥(S): Small

Small = fast algorithms. = fast algorithms.
Fiedler Value (\2): A poly-time Max Reweighted Spec Gap (7("): A poly-time
computable “spectral” quantity. computable quantity.

Theorem (Cheeger's inequality)

Theorem (Cheeger-Style Inequality [Roc05,

0TZ22, JPV22, KLT22])
For a graph G with max degree A,

For a graph G with max degree A,

¢(G)?
20

< M(G) < 26(G) ¥(G)*

log A ~

<$Y(G) S 9(6).

Spectral partitioning algorithm:
Compute \o(G), obtain S with ¢(S) Reweighted spectral partitioning algorithm:
bounded. Compute v(")(G), obtain S with 1(S) bounded.

Reweighted Spectral Partitioning

Theorem (Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree A,

2
min{loﬁ(AG,)a(GV} $97(6) S (6.

Reweighted Spectral Partitioning

Theorem (Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree A,

2
min{loi(g,)a(G)2} $97(6) S (6.

a(G) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G.

Reweighted Spectral Partitioning

Theorem (Cheeger-Style Inequality [New])
For a graph G with n vertices and maximum degree A,
G)? n
WOy <4(6) 5 u(6).

min{log A, a(G)?} ™~

a(G) is the w -
metries-over—G- intrinsic dimension of G.

Reweighted Spectral Partitioning

Theorem (Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree A,

2
min{loﬁ(AG,)a(GV} $97(6) S (6.

a(G) is the w L
metries-over—G- intrinsic dimension of G.
E.g. G planar = «a(G) € O(1).

Reweighted Spectral Partitioning

Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).

1
Planar —
n

Graph class A <41 <

gmin{(log g)?,log A}
n
(hlog hlog log h)?
n

Genus-g

Kp-minor-free

Reweighted Spectral Partitioning

Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).

Graph class (M <~ <
P i 17 =~ Graph class A <) <
Planar — K\ 2
- L 5 (d-dim) k-ply ball-intersection <n>
Genus.g gmin{(log g)*,log A}
n o\ 2
hlog hlog log h)2 (d—dlm) k-NN graph <>
Kp-minor-free (hlog Zg og h) n

Reweighted Spectral Partitioning

Reweighted spectral partitioning WOrks: Direct class-specific upper bounds for 'y(”)(G).

Graph class (M <~ <
P i 17 =~ Graph class A <) <
Planar — K\ 2
- L 5 (d-dim) k-ply ball-intersection <n>
Genus.g gmin{(log g)*,log A}
n o\ 2
hlog hlog log h)2 (d—dlm) k-NN graph <>
Kp-minor-free (hlog Zg og h) n

E.g. G planar = +(M(G) <1 = ¢(S) < = reproduces planar separator theorem!

Sl

Intuition for ("(G)

For a graph G, define:
”y(d)(G)

f:V—RI
y:V—=R>q

subject to

Zvevy(V)

Teev 1B

> f(v)

veV
y(u) +y(v)

0

1f(u) = F(WI3 VuveE

Intuition for ("(G)

Definition
For a graph G, define: 5)
(d) o : veVy v
YNG) = min S e
v ey OB
subject to Zf(v) = 0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius = /y(v).

Intuition for ("(G)

Definition
For a graph G, define: >)
(d) o . vev YV
YNG) = min e
o ey 0B
subject to Zf(v) = 0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.

Intuition for ("(G)

Definition
For a graph G, define:
AD(G) = min 2wev (V) -
s Ty IFCITB
subject to Zf(v) = 0
veVv
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.

Intuition for ("(G)

Definition
For a graph G, define: >)
(d) — H veVy v
YNG) = min =
e T IF0IE
subject to Zf(v) =0
veV
y(u) +y(v) > ||f(u) —f(V)|3 YuvecE

Loose interpretation:

@ For v € V: Create a ball in R? centred at f(v),
radius ~ +/y(v).

@ Minimize sum of squared radii under normalization
constraints.

o Constraint: Adjacent balls must intersect.

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

¢(G)2 < 7(1)(G) < y
min{log A, [a(G)]?} ~ min{log A, [G)]?} ™

(M(G) S+W(G) S ¥(G).

Reminder: v(") is the poly-time computable quantity (it is an SDP).

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

P(G)? +Y1(6) (n)
min{log A, [a(G)]?} S min{log A, [a(G)]?} S 7(e)

Lemma (0TZ22)
For a graph G,

¥(6)* S7(6) S ¥(6).

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

P(G)? +Y1(6) (n)
min{log A, [a(G)]?} S min{log A, [a(G)]?} S 7(e)

Lemma (0TZ22)
For a graph G,

¥(6)* S7(6) S ¥(6).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree A,

+YM(6) £vI(G) £+ (G) - log A.

Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree A,

P(G)? < 7M(6) <
min{log A, [a(G)]?} ~ min{log A, [a(G)]?} ~

+(G) $vI(G) S ¥(6).

Lemma (0TZ22)
For a graph G,

¥(6)* S7(6) S ¥(6).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree A,

+YM(6) £vI(G) £+ (G) - log A.

Method: Don't change sphere radii, use random projection on centres.

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S 1I(6) $417(6) - a(G).

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S 1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S 1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,

7"(6) S 1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10)

For a metric space (X, d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(a(X, d)?).

Note: For a vertex-weighted shortest-path metric (X, d) on G, a(G) < (X, d).

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S 1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10)

For a metric space (X, d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(a(X, d)?).

Note: For a vertex-weighted shortest-path metric (X, d) on G, a(G) < (X, d).
Ongoing follow-up work: This is now deterministic.

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,

7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).

Proof Step 1: Non-expansive for shortest-path metric = partially non-expansive for original
L, metric = adjacent balls still intersect!

Refining the Cheeger-Style Inequality

For a graph G with maximum degree A,
7"(6) S1I(6) $417(6) - a(G).

New method: Embeddings of shortest-path metrics!
Let w(v) := radius of v. Use w-weighted SPs on G.

Theorem (Rab08, BLR10, KR10, unpublished follow-up work)

For a graph G with vertex-weights w : V — R>q, a deterministic algorithm can compute a
non-expansive embedding of d,, into the line with average 2-distortion O(a(G)?).

Proof Step 1: Non-expansive for shortest-path metric = partially non-expansive for original
L, metric = adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound = normalizing denominator in objective only
goes up by O(a(G)?).

Two kinds of upper bounds on v{")(G): Geometric and Combinatorial

Reminder: v("(G) small for a class of graphs = small sparse cuts t(S).

Two kinds of upper bounds on v{")(G): Geometric and Combinatorial

Reminder: (" (G) small for a class of graphs = small sparse cuts 9(S).

Geometric Bounds on +(")(G)
Rich theory of circle packings!

Two kinds of upper bounds on v{")(G): Geometric and Combinatorial

Reminder: (" (G) small for a class of graphs = small sparse cuts 9(S).

Geometric Bounds on +(")(G)
Rich theory of circle packings!

Combinatorial Bounds on 7("(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

m3

cr(G) 2 =

Two kinds of upper bounds on v{")(G): Geometric and Combinatorial

Reminder: (" (G) small for a class of graphs = small sparse cuts 9(S).

Geometric Bounds on +(")(G)
Rich theory of circle packings!

Either kind = ~(1)(G) < % for G planar.

Combinatorial Bounds on 7("(G)
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

m3

cr(G) 2 =

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Bounding 7(3):

Geometric Bounds: Planar Case

Construction from Spielman-Teng: .
Bounding 7(3):

Step 1: Planar circle packing theorem. Every planar Use y(v) := 2 - rad(v)?
graph admits touching circles representation. f(v) := centre of disk on sphere.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Bounding 7(3):
Use y(v) := 2 - rad(v)?,
f(v) := centre of disk on sphere.

Centroid at origin:

ZVEV f(V) =0

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Bounding 7(3):
Use y(v) := 2 - rad(v)?,
f(v) := centre of disk on sphere.

Centroid at origin:
Svevf(v)=0

Touching circles (uv € E):

y(u) +y(v) > (rad(u) + rad(v))?
> [[f(u) = F(v)II3

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Bounding 7(3):
Use y(v) := 2 - rad(v)?,
f(v) := centre of disk on sphere.

Centroid at origin:
Svevf(v)=0

Touching circles (uv € E):

y(u) +y(v) > (rad(u) + rad(v))?
> [[f(u) = F(v)II3

Unit sphere: - [[f(x)I3 =n

Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation < area of unit
sphere (4)

Bounding 7(3):
Use y(v) := 2 - rad(v)?,
f(v) := centre of disk on sphere.

Centroid at origin:
Svevf(v)=0

Touching circles (uv € E):

y(u) +y(v) > (rad(u) + rad(v))?
> [[f(u) = F(v)II3

Unit sphere: - [[f(x)I3 =n
Area bound: > .\, y(v) S 1.

Geometric Bounds: Planar Case

Construction from Spielman-Teng: .
Bounding 7(3):

Step 1: Planar circle packing theorem. Every planar Use y(v) := 2 - rad(v)?
graph admits touching circles representation. f(v) := centre of disk on sphere.

Centroid at origin:
Svevf(v)=0

Touching circles (uv € E):

y(u) +y(v) > (rad(u) + rad(v))?
> [[f(u) = F(v)II3

Unit sphere: - [[f(x)I3 =n

Step 2: Stereographic projection: Put circle packing Area bound: > .\, y(v) S 1.
onto unit sphere (centroid at origin).
Result: 2vevy (V)

Step 3: Total area of representation < area of unit = /2
- f
sphere (4) 2xev IF(II2

N

1
n

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.
o Will form new graph H.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.
o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.
o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.

e Edges of H: Edge (optionally) exists in G
between the subgraphs.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.
o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.

e Edges of H: Edge (optionally) exists in G
between the subgraphs.

@ This is a minor.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.
o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.

e Edges of H: Edge (optionally) exists in G
between the subgraphs.

@ This is a minor.

@ Uniform if subgraphs form a partition with
equal-sized parts.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.
o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.

e Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

@ Start with graph G.

o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.
e Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor. How to use:

Uniform if subgraphs form a partition with
equal-sized parts.

@ Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

@ Start with graph G.

o Will form new graph H.

@ Vertices of H: Disjoint connected subgraphs of G.
e Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor. How to use:

Uniform if subgraphs form a partition with @ Start with H.
equal-sized parts.

@ Shallow if subgraphs have bounded diameter.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G.
Will form new graph H.
Vertices of H: Disjoint connected subgraphs of G.

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:
@ Start with H.

@ Construct G that has H as
uniform shallow minor.

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G.
Will form new graph H.
Vertices of H: Disjoint connected subgraphs of G.

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.

How to use:
@ Start with H.

@ Construct G that has H as
uniform shallow minor.

@ Bound /(1)(G).

Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.
@ Start with graph G.

o Will form new graph H.
@ Vertices of H: Disjoint connected subgraphs of G.

e Edges of H: Edge (optionally) exists in G
between the subgraphs.

@ This is a minor. How to use:
@ Uniform if subgraphs form a partition with © Start with H.

equal-sized parts. @ Construct G that has H as
@ Shallow if subgraphs have bounded diameter. uniform shallow minor.

@ Bound /(1)(G).
@ Relate y()(H) and v()(G).

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

© Reduce to triangulated constant-degree case
[uniform shallow minors].

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

© Reduce to triangulated constant-degree case
[uniform shallow minors].

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

© Reduce to triangulated constant-degree case
[uniform shallow minors].

© Reduce to highly “refined” graph
[adapt argument of Kelner].

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

© Reduce to triangulated constant-degree case
[uniform shallow minors].

© Reduce to highly “refined” graph
[adapt argument of Kelner].

@ Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Geometric Bounds: Overview for Genus-g Graphs

Four steps:

© Reduce to constant-degree graph
[uniform shallow minors].

© Reduce to triangulated constant-degree case
[uniform shallow minors].

© Reduce to highly “refined” graph
[adapt argument of Kelner].

@ Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: 4(1(G) < gle&

n

Combinatorial Bounds: Overview for Genus-g Graphs

EN

n
crg(Kn) 2 —
o(Ka) 2
e
cony(G) 2 —
(9=
¢ Integrality gap

n2

VE

¢ Strong duality

conz(G) =
2
5:(6) z 1 QuySdwarz
Ve |

l Metric embedding ¢Metric embedding

— 1 Cauchy-Schwarz _; 2
a6z — - @,(6)2
V&logg g(logg)

X(G) £ (logg)”
iStrong duality

Y(G) £ (logg)” ¢

T Relaxation

> 11(G) < (logg)*

Combinatorial Bounds: Overview for Genus-g Graphs

(cntkn =™)

lg E
¢ 2 BDX04
con3(G) 2 — Roch05
vE 0TZ22

¢ Integrality gap B LRlO

n’ [28 \
> 2(G) < (I g
conz(G)N\/E 22(G) 5 (logg)™
¢Strong duality iStrong duality
n? Cauchy-Skhwarz 2 N 28
5(G) 2 — sup dé(u,v)]° 2 — M(G) < (lo =
\=(0)2 g T s 3 el 2 17(6) 5 (log g)*E
[lwll2<1
lMetric embedding ¢Metric embedding TReIaxation
—a 1 Cauchy-Schwarz __; n?
@(6) 2 — @,)(6)2 ' —; «——>(1""(6) < (logg)’€

J

VElogg ~ g(logg)? (

Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
https://arxiv.org/pdf/2506.01228

Lots more results in the paper!

https://arxiv.org/pdf/2506.01228

Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
https://arxiv.org/pdf/2506.01228

Lots more results in the paper!
o New separator theorems for some geometric graph classes.
o Other bounds on (",
@ A new bound on \, for genus-g graphs.
e Fixes for a couple proofs from previous papers.

https://arxiv.org/pdf/2506.01228

Reweighted Spectral Partitioning Works:
A Simple Algorithm for Vertex Separators in Special Graph Classes

Jack Spalding-Jamieson
https://arxiv.org/pdf/2506.01228

Lots more results in the paper!
o New separator theorems for some geometric graph classes.
o Other bounds on (",
@ A new bound on \, for genus-g graphs.
e Fixes for a couple proofs from previous papers.

Questions?

https://arxiv.org/pdf/2506.01228

