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Balanced Vertex Separators

Vertex Separator: Small set of vertices whose removal disconnects into small components.

Theorem (Planar Separator Theorem)

For a planar graph G of n vertices, there is a subset S of O
(√

n
)
vertices so that every

connected component of G − S has at most 2
3n vertices. S can be found in O(n) time.

Small separator = many fast algorithms!
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Other Separator Theorems (1)

Genus-g graph: Embeddable on genus-g surface without crossings.

Theorem (Genus-g Separator Theorem)

Genus g graph: Separator size O
(√

gn
)
. Can be found in O(n) time, if a surface embedding

is provided.

Theorem (Kh-minor-free Separator Theorem)

Kh-minor-free graph: Separator size O
(
h
√
n
)
. Can be found in O(n2) time, provided that h

is constant.
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Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (MTTV97)

Separator size O
(
dk

1
d n1−

1
d

)
.

Can be found in O(f (d) + nd2) time, for a function f , if the points are provided.



Other Separator Theorems (2)

k-ply d-dimensional sphere-intersection graph d-dimensional k-NN graph

Theorem (New, Side-Result)

Separator size O
(√

min{d , log∆}k
1
d n1−

1
d

)
.

Can be found in polynomial time, if the points are provided.



Generic Algorithms with Many Proofs

In practice: Given graph, don’t know class. Want guarantees if class is nice.
Three approaches:

Parametrized Algorithms Approximation algorithms One algorithm, many proofs
Strong per-class guarantees Per-instance guarantees Strong per-class guarantees
Complex algorithms Medium-complex algos Simple algorithms
Complex proofs Medium-complex proofs Complex proofs
Slow Fast Fast

This talk is about the third kind!

Move the difficulty from the algorithm to the proofs.

Implementable!

Fast and strong per-class guarantees.

The algorithm we consider: Reweighted Spectral Partitioning.
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Results: Poly-time Separator Sizes

Graph class This work Previous work

Genus-g O(min{(log g)2√gn, log∆
√

gn}) O(min{(log g)
√

gn, poly(∆)
√
gn})

Kh-minor-free O(min{log h,
√
log∆}(h log h log log h)

√
n) O((log h)h

√
n)

k-ply ball-int-
ersection in Rd O(

√
log∆ · k1/dn1−1/d ) O(

√
log n · dk1/dn1−1/d)

k-nearest-nei-
ghbour in Rd O(

√
log∆ · k1/dn1−1/d ) O(

√
log n · dk1/dn1−1/d)

Reweighted spectral partitioning separator size guarantees (via this work)
vs. previous algorithms.



Separators, Expansion, and Cuts

Want small boundary to area ratio

For a set S ⊂ V , edge expansion of S is:

ϕ(S) :=
|E (S ,Sc)|
|S |

.

For a set S ⊂ V , vertex expansion of S is:

ψ(S) :=
|N(S) ∩ Sc |
|S |

.

Known algorithm:
For induced subgraph H ⊂ G , find cut S with ψ(S) ≤ α

|H|ε

=⇒ can get balanced vertex separator of size O(αn1−ε).
(Requires |S | ≤ n

2 )
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A Related Example: Spectral Partitioning of Graphs

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Fact for planar graphs: ϕ(G ) ≲
√

∆
n .

λ2(G )+Cheeger: ϕ(S) ≲

√
∆
√

∆
n (weak).

First specialized proof:
Spectral Partitioning Works
by Daniel Spielman and Shang-Hua Teng.

G planar =⇒ λ2(G ) ≲ ∆
n

Now λ2(G )+Cheeger =⇒ ϕ(S) ≲ ∆
3
2√
n
.

Similar results for many other classes (also in other
works).
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From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G ) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G )2

log∆
≲ γ(n)(G ) ≲ ψ(G ).

hard to compute, want to approximate



From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G ) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G )2

log∆
≲ γ(n)(G ) ≲ ψ(G ).

hard to compute, want to approximate



From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G ) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G )2

log∆
≲ γ(n)(G ) ≲ ψ(G ).

hard to compute, want to approximate



From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G ) := min|S|≤n
2
ψ(S): Small

= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G )2

log∆
≲ γ(n)(G ) ≲ ψ(G ).

hard to compute, want to approximate



From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G ) := min|S|≤n
2
ψ(S): Small
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Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.
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From Spectral Partitioning to Reweighted Spectral Partitioning

Edge expansion ϕ(G ) := min|S |≤n
2
ϕ(S):

Small = fast algorithms.

Fiedler Value (λ2): A poly-time
computable “spectral” quantity.

Theorem (Cheeger’s inequality)

For a graph G with max degree ∆,

ϕ(G )2

2∆
≤ λ2(G ) ≤ 2ϕ(G )

Spectral partitioning algorithm:
Compute λ2(G ), obtain S with ϕ(S)
bounded.

Vertex expansion ψ(G ) := min|S|≤n
2
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= fast algorithms.

Max Reweighted Spec Gap (γ(n)): A poly-time
computable quantity.

Theorem (Cheeger-Style Inequality [Roc05,
OTZ22, JPV22, KLT22])

For a graph G with max degree ∆,

ψ(G )2

log∆
≲ γ(n)(G ) ≲ ψ(G ).

Reweighted spectral partitioning algorithm:
Compute γ(n)(G ), obtain S with ψ(S) bounded.



Refining Reweighted Spectral Partitioning

Theorem (Refined Cheeger-Style Inequality [New])

For a graph G with n vertices and maximum degree ∆,
ψ(G )2

min{log∆, α(G )2}
≲ γ(n)(G ) ≲ ψ(G ).

α(G ) is the worst-case modulus of padded decomposition for vertex-weighted shortest-path
metrics over G .
E.g. G planar =⇒ α(G ) ∈ O(1).
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Reweighted Spectral Partitioning Works

Reweighted spectral partitioning works: Direct class-specific upper bounds for γ(n)(G ).

Graph class γ(n) ≤ γ(1) ≲

Planar
1

n

Genus-g
g min{(log g)2, log∆}

n

Kh-minor-free
(h log h log log h)2

n

Graph class γ(n) ≤ γ(d) ≲

(d-dim) k-ply ball-intersection

(
k

n

) 2
d

(d-dim) k-NN graph

(
k

n

) 2
d

E.g. G planar =⇒ γ(n)(G ) ≲ 1
n =⇒ ψ(S) ≲ 1√

n
=⇒ reproduces planar separator theorem!
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Intuition for γ(n)(G )

Definition

For a graph G , define:

γ(d)(G ) := min
f :V→Rd

y :V→R≥0

∑
v∈V y(v)∑

x∈V ||f (x)||22

subject to
∑
v∈V

f (v) = 0

y(u) + y(v) ≥ ||f (u)− f (v)||22 ∀uv ∈ E

Loose interpretation:

For v ∈ V : Create a ball in Rd centred at f (v),
radius ≈

√
y(v).

Minimize sum of squared radii under normalization
constraints.

Constraint: Adjacent balls must intersect.
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Expanding the Cheeger-Style Inequality

Theorem (Refined Cheeger-Style Inequality, expanded)

For a graph G with n vertices and maximum degree ∆,

ψ(G )2

min{log∆, [α(G )]2}
≲

γ(1)(G )

min{log∆, [α(G )]2}
≲ γ(n)(G ) ≲ γ(1)(G ) ≲ ψ(G ).

Reminder: γ(n) is the poly-time computable quantity (it is an SDP).

Lemma (OTZ22)

For a graph G,
ψ(G )2 ≲ γ(1)(G ) ≲ ψ(G ).

Lemma (Dimension-reduction step [KLT22])

For a graph G with maximum degree ∆,

γ(n)(G ) ≲ γ(1)(G ) ≲ γ(n)(G ) · log∆.

Method: Don’t change sphere radii, use random projection on centres.
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Refining the Cheeger-Style Inequality

Lemma (New)

For a graph G with maximum degree ∆,

γ(n)(G ) ≲ γ(1)(G ) ≲ γ(n)(G ) · α(G )2.

New method: Embeddings of shortest-path metrics!
Let ω(v) := radius of v . Use ω-weighted SPs on G .

Theorem (Rab08, BLR10, KR10)

For a metric space (X , d), a Monte Carlo algorithm can compute a non-expansive embedding
of d into the line with average 2-distortion O(α(X , d)2).

Note: For a vertex-weighted shortest-path metric (X , d) on G , α(G ) ≤ α(X , d).
Ongoing follow-up work: This is now deterministic.
Proof Step 1: Non-expansive for shortest-path metric =⇒ partially non-expansive for original
L2 metric =⇒ adjacent balls still intersect!

Proof Step 2: Average 2-distortion bound =⇒ normalizing denominator in objective only
goes up by O(α(G )2).
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Two kinds of upper bounds on γ(n)(G ): Geometric and Combinatorial

Reminder: γ(n)(G ) small for a class of graphs =⇒ small sparse cuts ψ(S).

Geometric Bounds on γ(n)(G )
Rich theory of circle packings!

Combinatorial Bounds on γ(n)(G )
Congestion bounds via crossing numbers!
E.g., crossing number lemma:

cr(G ) ≳
m3

n2
.

Either kind =⇒ γ(1)(G ) ≲ 1
n for G planar.
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Geometric Bounds: Planar Case

Construction from Spielman-Teng:

Step 1: Planar circle packing theorem. Every planar
graph admits touching circles representation.

Step 2: Stereographic projection: Put circle packing
onto unit sphere (centroid at origin).

Step 3: Total area of representation ≤ area of unit
sphere (4π)

Bounding γ(3):

Use y(v) := 2 · rad(v)2,
f (v) := centre of disk on sphere.

Centroid at origin:∑
v∈V f (v) = 0

Touching circles (uv ∈ E ):
y(u) + y(v) ≥ (rad(u) + rad(v))2

≥ ∥f (u)− f (v)∥22

Unit sphere:
∑

x∈V ∥f (x)∥22 = n

Area bound:
∑

v∈V y(v) ≲ 1.

Result:

∑
v∈V y(v)∑

x∈V ∥f (x)∥22
≲

1

n
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Geometric Bounds: Uniform Shallow Minors (for Genus-g Graphs)

New structure: Uniform shallow minors.

Start with graph G .

Will form new graph H.

Vertices of H: Disjoint connected subgraphs of G .

Edges of H: Edge (optionally) exists in G
between the subgraphs.

This is a minor.

Uniform if subgraphs form a partition with
equal-sized parts.

Shallow if subgraphs have bounded diameter.
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Geometric Bounds: Overview for Genus-g Graphs

Four steps:

1 Reduce to constant-degree graph
[uniform shallow minors].

2 Reduce to triangulated constant-degree case
[uniform shallow minors].

3 Reduce to highly “refined” graph
[adapt argument of Kelner].

4 Use circle packings with ply bounds for most points
[adapt argument of Kelner].

Result: γ(1)(G ) ≲ g log∆
n

∆ = 10
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Combinatorial Bounds: Overview for Genus-g Graphs
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