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NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).
NP-Hard # impossible:

e Exponential time algorithms

e SAT/SMT/ILP solvers
e Approximation algorithms

e Rounding methods, greedy solutions, etc.
e Heuristic algorithms

e Local search techniques
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About the CG:SHOP challenge

Computational Geometry: Solving Hard Optimization Problems (CG:SHOP)
is an annual competition that is part of CG Week.

e 2019-2022: Fairly “combinatorial” problems.

|
e 2023-2025: Solutions use rational coordinates.

| |
e 2026: More “combinatorial’ again. | I
This talk: 2020-2022.
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Elements needed for local search

e Need initial solution(s)
e Need to define “nearby” solutions (reconfiguration graph)
e How to decide which nearby solution to choose?

e Greedy choice: Look at all, move if it's better
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Variations of Local Search

1. Generating different initialization to start from

e Problem-specific ideas

e Genetic algorithms that “merge” feasible solutions
2. Improving on greedy local search

e Randomness + Restarts (repeated trials give different results)
e Simulated Annealing (sometimes allow bad moves)

k-opt (make k changes at once)

Conflict optimization (go outside the feasible region)
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CG:SHOP2020 - Team UBC

Team members: Jack Spalding-Jamieson, Brandon Zhang, and Da Wei (David) Zheng.
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CG:SHOP2020 - Preview of Results

Winners and Accepted Papers — CG Challenge

1 Team UBC, Canada: Da Wei Zheng, Jack Spalding-Jamieson, Brandon Zhang

Total score Best solutions (from 346 instances) Unique best solutions

175.172880 209 1

All members of this team were students, so they also won the Junior Category.

2 Team Haute-Alsace, France: Laurent Moalic. Dominicue Schmitt. Julien Lepagnot. Julien Kritter

Total score Best solutions (from 346 instances) Unique best solutions

175130597 297 126
3 Team Salzburg, Austria: Glinther Eder. Martin Held. Stefan de Lorenzo. Peter Palfrader

Total score Best solutions (from 346 instances) Unique best solutions

175.040207 187 o
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CG:SHOP2020 - Problem Statement

Input: n points in the plane (S).
Output: A partitition of their convex hull into convex faces whose vertex set is S.




CG:SHOP2020 - Approach - Overview
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CG:SHOP2020 - Initialization

e The Delauney triangulation was used as the starting point.
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CG:SHOP2020 - Edge Removal Moves

e Some edges can be removed while keeping faces convex.

e If there are many edges, remove edges in a random order.
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CG:SHOP2020 - Rotation Moves

e Half-edges can often be rotated, so long as both incident faces remain convex.
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CG:SHOP2020 - Rotation Moves (2)

e Half-edges can be rotated so long as no angles become reflex.

e In this example, convexity is preserved:
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CG:SHOP2020 - Rotation Moves (3)

e In this example, the bottom angle becomes reflexive:
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CG:SHOP2020 - Rotation Moves (4)

e In this example, the top angle becomes reflexive:
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CG:SHOP2020 - Rotation Moves (5)

e There may be many edges that can be rotated.
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CG:SHOP2020 - Rotation Moves (5)

e There may be many edges that can be rotated.
e Choose a random one and do a random walk through the reconfiguration space of convex
partitions.
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CG:SHOP2020 - Approach Step 3 - Keeping Track of Half-Edges

e We keep an up-to-date list of half-edges that can be rotated.

e There is a constant number of different half-edges that need to be updated.

In green: the half-edges that need to be updated.
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CG:SHOP2020 - Collinear points

For a general position point set, all (interior) vertices have degree > 3.

Can do better with collinear points.
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CG:SHOP2020 - Extra instances

The organizers realized this as well and added many instances called rop and ortho-rect that
looked like this:

Starting with Delauney triangulation did ok, but we can do better. ’s
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CG:SHOP2020 - Initialization (v2)

e Afterwards, the local search would remove extraneous edges.

Before running local search.
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CG:SHOP2020 - Initialization (v2)

e Afterwards, the local search would remove extraneous edges.

I =

After running local search.
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CG:SHOP2020 - Results - Hardware

Ran on some UBC servers.

e Ran local search continuously for about 16 days.

e Consumed approximately 1.5 years of CPU time.
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CG:SHOP2020 - Results - Demo

Instance 1ondon-0000040 with 40 points, 469 iterations, and 64 final edges.

Animation: london-0000040 local search demo (469 iterations)
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https://jacksj.com/docstore/talks/cgshop-collection/videos/out.mp4

CG:SHOP2020 - Results - Visualization

e Most of the instance groups and our respective scores are plotted on the table below:
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CG:SHOP2020 - Results - Large euro-night instance

e For the 100 000 point euro-night instance, y-coordinates were in [0,57 598] = many
shared y-values.
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CG:SHOP2020 - Results - Large euro-night instance

e For the 100 000 point euro-night instance, y-coordinates were in [0,57 598] = many
shared y-values.
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CG:SHOP2020 - Results - Large euro-night instance

Optimized large euro-night instance with 40 000 points from horizontally-joined initialization.
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CG:SHOP2020 - Results

Total: 346 instances

Winners and Accepted Papers — CG Challenge

1 Team UBC, Canada: Da Wei Zheng, Jack Spalding-Jamieson, Brandon Zhang

Total score Best solutions (from 346 instances) Unigue best solutions
175172880 209 11
All members of this team were students, so they also won the Junior Category.
2 Team Haute-Alsace, France: Laurent Moalic. Dominique Schmitt. Julien Lepagnot. Julien Kritter
Total score Best solutions (from 346 instances) Unique best solutions

175130597 297 126
3 Team Salzburg, Austria: Glinther Eder. Martin Held. Stefan de Lorenzo. Peter Palfrader

Total score Best solutions (from 346 instances) Unique best solutions

175.040207 187 o
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CG:SHOP2020 - Techniques by the Other Teams

e Team Haute-Alsace

e Used a memetic approach to take “good polygons” from two good solutions, then
triangulated rest.

e Team Salzburg

e Tried implementing known 3-Approximations
e Used recursion from high degree vertices instead of doing globally random flipping
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CG:SHOP2021 - Team gitastrophe

All of us have left UBC. Paul (also UBC alumnus) joined our team, making us quite diverse.
Team members:

e Paul Liu (Stanford)

e Jack Spalding-Jamieson (Waterloo)

e Brandon Zhang (Working)
e Da Wei (David) Zheng (UIUC)
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CG:SHOP2021 - Preview of Results

MAX
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CG:SHOP2021 - Problem Statement

Given a set R of n robots, find a collision-free set of parallel motions for unit-square robots in
the square grid Z?2 that minimizes total distance travelled or minimizes makespan (different
problem categories).

Animation: Robot motion planning demo
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https://jacksj.com/docstore/talks/cgshop-collection/videos/long_distance_video.mp4

CG:SHOP2021 - Robot Animation

Animation: Roomba robot motion demo

Creative Commons attributions: " Doomba” model by PolyDucky, " Cardboard Box" model by Agustin

Honnun.
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https://jacksj.com/docstore/talks/cgshop-collection/videos/roombas.mp4

CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:
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CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

1. Initialization
e Basic initializations
e Improved initializations
2. Optimization
e Basic greedy local search (1-opt)
e k-opt
e Algorithm engineering
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Instances were boundaryless: Robots can move far away.

We used the following algorithm:
1. Compute a set of far away intermediate locations

2. Compute min-cost matching of robots start and end
locations to intermediate locations

3. Route robots from start locations to intermediate
positions by order of start location depth
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Instances were boundaryless: Robots can move far away.

We used the following algorithm:

7,0 5 . 1. Compute a set of far away intermediate locations
S Z . 2. Compute min-cost matching of robots start and end
DD ) DD DD : locations to intermediate locations
oo - 3. Route robots from start locations to intermediate
4 A - ° DD o positions by order of start location depth
. s 4. Route robots from intermediate locations to target
o . locations in order of end location depth (guaranteed by

previous step)

40



CG:SHOP2021 - Improved Initialization

Instances were boundaryless: Robots can move far away.
We used the following algorithm:

7,0 5 . 1. Compute a set of far away intermediate locations
S Z . 2. Compute min-cost matching of robots start and end
DD ) DD DD : locations to intermediate locations
oo - 3. Route robots from start locations to intermediate
4 A - ° DD o positions by order of start location depth
o, ", 0" 4. Route robots from start locations to target locations
o . in order of end location depth (guaranteed by previous

step)
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CG:SHOP2021 - Initialization - Video

Videos of robot movement as robots are routed from start locations to target locations

Animation: Robot initialization routing
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https://jacksj.com/docstore/talks/cgshop-collection/videos/four_part_initialization.mp4

CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S:

e Pick a robot r and remove its path from S

42



CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S:

e Pick a robot r and remove its path from S

e Compute a new shortest path for r in the grid-time graph, respecting the other robots

42



CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S:

e Pick a robot r and remove its path from S
e Compute a new shortest path for r in the grid-time graph, respecting the other robots

e Repeat until no robot can shorten its path
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CG:SHOP2021 - Optimization - 1-opt

Animation: 1-opt optimization demo
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https://jacksj.com/docstore/talks/cgshop-collection/videos/small3_1opt.mp4

CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.

44



CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.
Traditional k-opt (optimally solving for k robots at once) would be better, but is slow.

44



CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.
Traditional k-opt (optimally solving for k robots at once) would be better, but is slow.
Instead, use heuristic k-opt:

e Pick k robots {r,...,rx} € R and remove their paths from S

e Compute a new shortest path for r; in the grid-time graph, respecting the other robots

e Repeat many times
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CG:SHOP2021 - Optimization - k-opt

Animation: k-opt optimization demo
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https://jacksj.com/docstore/talks/cgshop-collection/videos/small_free_003.mp4

CG:SHOP2021 - Optimization - Algorithm Engineering

How do we make our optimization iterations run quickly and efficiently?

e To find paths, use A* with Manhattan distance as heuristic.
e Limit path-finding algorithm to explore locally around original path for some radius R.

e Choose k in the k-opt to balance runtime vs improvement.
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- Optimization - Adjusting R

Makespan and distance plots as R varied. k was kept fixed at 7.

Final challenge makespan score: 126. Final distance score: 43 437.
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- Optimization - Adjusting k

Makespan and distance plots as k varied. R was kept fixed at 20.

Final challenge makespan score: 126. Final distance score: 43 437.
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CG:SHOP2021 - Results

Total: 203 instances
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CG:SHOP2021 - Results

MAX

Rank  Team

1 Shadoks

2 UNIST

3 gitastrophe

SUM

Rank Team

1 gitastrophe
2 UNIST

3 Shadoks

Junior
team

Junior
team

v

Score MAX

202.9375

174.0180514765

159.5472362028

Score MAX

159.5472362028

174.0180514765

202.9375

e Team Shadoks' approach was by far the best:

optimization. . .

Score SUM

180.4952611231

191.7893810645

198.494347968

Score SUM

198.494347968

191.7893810645

180.4952611231

# Best
solutions
(MAX)
202

14

24

#Best
solutions
(MAX)
24

14

202

# Best
solutions
(SUM)

0

120

57

#Best
solutions
(Sum)
57

120

0

They did not even try to optimize for SUM.
e Two reasons: Smarter initialization + a new local search technique named conflict
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CG:SHOP2022 - Team gitastrophe

Team members:

e Jack Spalding-Jamieson (Waterloo)
e Brandon Zhang (Working)
e Da Wei (David) Zheng (UIUC)
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CG:SHOP2022 - Standings Preview

Rank

Team

Shadoks

gitastrophe

LASAOFOOFUBESTINNRRALLDECA

TU Wien

Junior team

Score

225.0

217.48574745772237

211.80303248033107

195.9666148217582
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Problem Statement

Input: A straight-line drawing of a graph G = (V, E).
Output: A partition of G into plane subgraphs (COLOURS).
Goal: Minimize the number of subgraphs.




CG:SHOP2022 - Reduction to Vertex Colouring

Construct a conflict graph G’:

o V(G') = E(G)

e E(G’) := the pairwise intersections of the straight-line edges.

-
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Approach - Overview

Two main components:

1. (Very basic) Initialization
2. Local search optimization

e Conflict Optimization
e Alternative heuristics

55



Initialization (Very Simple)

e Start with all the edges uncoloured.

e Loop through the straight-line edges in some order, colour them greedily.

Good orderings:

e Sorted by slope.
e Sorted by decreasing order of degree in the conflict graph (Welsh and Powell. 1967).
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Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

e Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

e Very broad idea, can be applied this year as well.
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Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

e Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

e Very broad idea, can be applied this year as well.
Main idea:

e Eliminate an entire colour class without giving the edges a new colour.
e Try to colour each uncoloured edge while minimizing a conflict score (a heuristic).

e Uncolour the conflicting edges when colouring an edge.
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Optimization Example (1)

p-



Optimization Example (4)

Step 1: Eliminate a Colour



Optimization Example (5)

Choose blue to eliminate



Optimization Example (6)

Uncolour all blue edges



Optimization Example (7)

Look at an uncoloured edge



Optimization Example (8)

Pick a new colour according to a “conflict score” heuristic

Choose orange



Optimization Example (9)

-

Colour the edge and uncolour all conflicting edges

[



Optimization Example (10)

-

If there is one: Look at an uncoloured edge

[



Optimization Example (11)

[

Pick a new colour according to a “conflict score” heuristic

Choose green



Optimization Example (12)

/

[

Pick a new colour according to a “conflict score” heuristic

Choose green
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Optimization Example (13)

One colour down!
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Optimization Example (14)

/

[

Let’s try to eliminate another one: Purple
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Optimization Example (15)

¥

/

[

Uncolour all the purple edges
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Optimization Example (16)

Look at an uncoloured edge
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Optimization Example (17)

/

[

Choose a colour based on a “conflict score”
Choose red
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Optimization Example (18)

/

[

Colour the edge red and uncolour any conflicting edges

(none in this case)
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Optimization Example (19)

¥

/

[

Look at another uncoloured edge
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Optimization Example (20)

/

[

Choose a colour for it based on conflict score
Choose red

75



Optimization Example (21)

/

[

Colour the edge red and uncolour any conflicting edges
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Optimization Example (22)

¥

/

[

Look at an uncoloured edge

7



Optimization Example (23)

/

[

Choose a colour based on a “conflict score”

Choose green
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Optimization Example (24)

/

[

Colour the edge green and uncolour any conflicting edges
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Optimization Example (25)

-

/

[

Look at an uncoloured edge



Optimization Example (26)

/

[

Choose a colour based on a “conflict score”

Choose green



Optimization Example (27)

/

[

Colour the edge green and uncolour any conflicting edges



Optimization Example (28)

Look at an uncoloured edge
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Optimization Example (29)

/

[

Choose a colour based on a “conflict score”
Choose red
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Optimization Example (30)

/

[

Colour the edge red and uncolour any conflicting edges
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Optimization Example (31)
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Optimization - Heuristics

Conflict score:

Z 1+q(e)?
e/EC,'
(e’,e)eE(G")

g(e’) is the number of times e’ was uncoloured during the current “infeasible” stage.
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Optimization - Heuristics

Conflict score:

Z 1+q(e)?
e/EC,'
(e’,e)eE(G")

g(e’) is the number of times e’ was uncoloured during the current “infeasible” stage.

Alternative:

oo

e/EC,'
(¢, e)€E(G)
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Are we using the geometry?

Initialization stage: Yes, explicitly.
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Are we using the geometry?

Initialization stage: Yes, explicitly.
Conflict optimization stage: Kind of. .. this algorithm seems to perform best on geometric data.
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Comparison to Standard Vertex Colouring Approaches

Relative number of colours after 10 minutes vs our algorithm
B HEAD W GACOL
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Dimacs Instance

Figure 1: 10 minutes of our algorithm versus standard approaches on dimacs graph colouring instances.
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Thank you for listening

Fin.
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