Heuristic Approaches in Computational Geometry

A walk through years of the CG challenge

Jack Spalding-Jamieson
Independent

Attribution: About 2/3rds of this presentation are based on one given by Da Wei (David) Zheng.

NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).

NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).
NP-Hard # impossible:

NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).
NP-Hard # impossible:

e Exponential time algorithms
e SAT/SMT/ILP solvers

NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).
NP-Hard # impossible:

e Exponential time algorithms
e SAT/SMT/ILP solvers
e Approximation algorithms

e Rounding methods, greedy solutions, etc.

NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).
NP-Hard # impossible:

e Exponential time algorithms

e SAT/SMT/ILP solvers
e Approximation algorithms

e Rounding methods, greedy solutions, etc.
e Heuristic algorithms

e Local search techniques

About the CG:SHOP challenge

Computational Geometry: Solving Hard Optimization Problems (CG:SHOP)
is an annual competition that is part of CG Week.

About the CG:SHOP challenge

Computational Geometry: Solving Hard Optimization Problems (CG:SHOP)
is an annual competition that is part of CG Week.

e 2019-2022: Fairly “combinatorial” problems.

|
e 2023-2025: Solutions use rational coordinates.

| |
e 2026: More “combinatorial’ again. | I
This talk: 2020-2022.

Overview

Basic Framework: Local Search
. CG:SHOP 2020
. CG:SHOP 2021
. CG:SHOP 2022

A W N =

Overview

Basic Framework: Local Search
. CG:SHOP 2020
. CG:SHOP 2021
. CG:SHOP 2022

A W N =

Basic Framework: Local Search

1. Start at a decent feasible solution.
2. Repeatedly go to good “nearby” feasible solutions.

Basic Framework: Local Search

1. Start at a decent feasible solution.

2. Repeatedly go to good “nearby” feasible solutions.
A

Score

Search space (simplified) 6

Basic Framework: Local Search

1. Start at a decent feasible solution.

2. Repeatedly go to good “nearby” feasible solutions.
A

Score

Search space (simplified) 6

Basic Framework: Local Search

1. Start at a decent feasible solution.

2. Repeatedly go to good “nearby” feasible solutions.
A

Score

Search space (simplified) 6

Elements needed for local search

e Need initial solution(s)

Elements needed for local search

e Need initial solution(s)

e Need to define “nearby” solutions (reconfiguration graph)

Elements needed for local search

e Need initial solution(s)
e Need to define “nearby” solutions (reconfiguration graph)

e How to decide which nearby solution to choose?

Elements needed for local search

e Need initial solution(s)
e Need to define “nearby” solutions (reconfiguration graph)
e How to decide which nearby solution to choose?

e Greedy choice: Look at all, move if it's better

Variations of Local Search

1. Generating different initialization to start from

Variations of Local Search

1. Generating different initialization to start from

e Problem-specific ideas

Variations of Local Search

1. Generating different initialization to start from

e Problem-specific ideas
e Genetic algorithms that “merge” feasible solutions

Variations of Local Search

1. Generating different initialization to start from

e Problem-specific ideas
e Genetic algorithms that “merge” feasible solutions

2. Improving on greedy local search

Variations of Local Sea

1. Generating different initialization to start from

e Problem-specific ideas
e Genetic algorithms that “merge” feasible solutions

2. Improving on greedy local search

e Randomness + Restarts (repeated trials give different results)

Variations of Local Sea

1. Generating different initialization to start from

e Problem-specific ideas

e Genetic algorithms that “merge” feasible solutions
2. Improving on greedy local search

e Randomness + Restarts (repeated trials give different results)
e Simulated Annealing (sometimes allow bad moves)

Variations of Local Sea

1. Generating different initialization to start from

e Problem-specific ideas

e Genetic algorithms that “merge” feasible solutions
2. Improving on greedy local search

e Randomness + Restarts (repeated trials give different results)
e Simulated Annealing (sometimes allow bad moves)
e k-opt (make k changes at once)

Variations of Local Search

1. Generating different initialization to start from

e Problem-specific ideas

e Genetic algorithms that “merge” feasible solutions
2. Improving on greedy local search

e Randomness + Restarts (repeated trials give different results)
e Simulated Annealing (sometimes allow bad moves)

k-opt (make k changes at once)

Conflict optimization (go outside the feasible region)

Overview

Basic Framework: Local Search
. CG:SHOP 2020

. CG:SHOP 2021

. CG:SHOP 2022

A W N =

CG:SHOP2020 - Team UBC

Team members: Jack Spalding-Jamieson, Brandon Zhang, and Da Wei (David) Zheng.

10

CG:SHOP2020 - Preview of Results

Winners and Accepted Papers — CG Challenge

1 Team UBC, Canada: Da Wei Zheng, Jack Spalding-Jamieson, Brandon Zhang

Total score Best solutions (from 346 instances) Unique best solutions

175.172880 209 1

All members of this team were students, so they also won the Junior Category.

2 Team Haute-Alsace, France: Laurent Moalic. Dominicue Schmitt. Julien Lepagnot. Julien Kritter

Total score Best solutions (from 346 instances) Unique best solutions

175130597 297 126
3 Team Salzburg, Austria: Glinther Eder. Martin Held. Stefan de Lorenzo. Peter Palfrader

Total score Best solutions (from 346 instances) Unique best solutions

175.040207 187 o

11

CG:SHOP2020 - Problem Statement

Input: n points in the plane (S).
Output: A partitition of their convex hull into convex faces whose vertex set is S.

CG:SHOP2020 - Approach - Overview

e Small instances (< 100 vertices): solved exactly with MAXSAT formulation.

13

CG:SHOP2020 - Approach - Overview

e Small instances (< 100 vertices): solved exactly with MAXSAT formulation.

e Large instances: Local search method

13

CG:SHOP2020 - Approach - Overview

e Small instances (< 100 vertices): solved exactly with MAXSAT formulation.
e Large instances: Local search method

1. Initialization: Delauney triangulation

13

CG:SHOP2020 - Approach - Overview

e Small instances (< 100 vertices): solved exactly with MAXSAT formulation.
e Large instances: Local search method

1. Initialization: Delauney triangulation
2. Local search move type #1: Remove edges
3. Local search move type #2: Rotate edges

13

CG:SHOP2020 - Approach - Overview

e Small instances (< 100 vertices): solved exactly with MAXSAT formulation.
e Large instances: Local search method

1. Initialization: Delauney triangulation
2. Local search move type #1: Remove edges
3. Local search move type #2: Rotate edges

13

CG:SHOP2020 - Initialization

e The Delauney triangulation was used as the starting point.

14

CG:SHOP2020 - Edge Removal Moves

e Some edges can be removed while keeping faces convex.

e If there are many edges, remove edges in a random order.

15

CG:SHOP2020 - Rotation Moves

e Half-edges can often be rotated, so long as both incident faces remain convex.

16

CG:SHOP2020 - Rotation Moves (2)

e Half-edges can be rotated so long as no angles become reflex.

e In this example, convexity is preserved:

17

CG:SHOP2020 - Rotation Moves (3)

e In this example, the bottom angle becomes reflexive:

18

CG:SHOP2020 - Rotation Moves (4)

e In this example, the top angle becomes reflexive:

19

CG:SHOP2020 - Rotation Moves (5)

e There may be many edges that can be rotated.

20

CG:SHOP2020 - Rotation Moves (5)

e There may be many edges that can be rotated.
e Choose a random one and do a random walk through the reconfiguration space of convex
partitions.

20

CG:SHOP2020 - Approach Step 3 - Keeping Track of Half-Edges

e We keep an up-to-date list of half-edges that can be rotated.

e There is a constant number of different half-edges that need to be updated.

In green: the half-edges that need to be updated.

21

CG:SHOP2020 - Collinear points

For a general position point set, all (interior) vertices have degree > 3.

Can do better with collinear points.

22

CG:SHOP2020 - Extra instances

The organizers realized this as well and added many instances called rop and ortho-rect that
looked like this:

Starting with Delauney triangulation did ok, but we can do better. ’s

Y= 7 “\‘ Y
,4\\\\ /

1\} v
7

e For these instances we joined points sharing the same x, y, or the same slope, then joined
the end points together in a way that creates a convex partition.

e Joining collinear points together created degree 2 vertices. This is good.

~_
N
>
N
c
2
s
c
N
s
59
=
[}
o
I
o
N
o
o
L
2
O
O

24

CG:SHOP2020 - Initialization (v2)

e Afterwards, the local search would remove extraneous edges.

Before running local search.
25

CG:SHOP2020 - Initialization (v2)

e Afterwards, the local search would remove extraneous edges.

I =

After running local search.
26

CG:SHOP2020 - Results - Hardware

Ran on some UBC servers.

e Ran local search continuously for about 16 days.

e Consumed approximately 1.5 years of CPU time.

27

CG:SHOP2020 - Results - Demo

Instance 1ondon-0000040 with 40 points, 469 iterations, and 64 final edges.

Animation: london-0000040 local search demo (469 iterations)

28

https://jacksj.com/docstore/talks/cgshop-collection/videos/out.mp4

CG:SHOP2020 - Results - Visualization

e Most of the instance groups and our respective scores are plotted on the table below:

Score

0.75

0.7

0.65

0.6

0.55

0.5

0.45

04

0.35

03

® euro-night score
A
zA @ uniform score
;A A us-nightscore
* mona-lisa score
X rop
N ortho_rect
0 000 oopep *
»
x
x
X x
M
- g .
10 100 1000 10000 100000 1000000

Instance Size

29

CG:SHOP2020 - Results - Large euro-night instance

e For the 100 000 point euro-night instance, y-coordinates were in [0,57 598] = many
shared y-values.

30

CG:SHOP2020 - Results - Large euro-night instance

e For the 100 000 point euro-night instance, y-coordinates were in [0,57 598] = many
shared y-values.

—— Initialized from Delaunay triangulation

160000 —— Initizalized from horizontal majorization

140000

120000

80000

60000

X
40000

0 200000 400000 600000 800000 1000000 1200000 1400000
Iterations

(40,000 point euro-night instance)

30

CG:SHOP2020 - Results - Large euro-night instance

Optimized large euro-night instance with 40 000 points from horizontally-joined initialization.

31

CG:SHOP2020 - Results

Total: 346 instances

Winners and Accepted Papers — CG Challenge

1 Team UBC, Canada: Da Wei Zheng, Jack Spalding-Jamieson, Brandon Zhang

Total score Best solutions (from 346 instances) Unigue best solutions
175172880 209 11
All members of this team were students, so they also won the Junior Category.
2 Team Haute-Alsace, France: Laurent Moalic. Dominique Schmitt. Julien Lepagnot. Julien Kritter
Total score Best solutions (from 346 instances) Unique best solutions

175130597 297 126
3 Team Salzburg, Austria: Glinther Eder. Martin Held. Stefan de Lorenzo. Peter Palfrader

Total score Best solutions (from 346 instances) Unique best solutions

175.040207 187 o
32

CG:SHOP2020 - Techniques by the Other Teams

e Team Haute-Alsace

e Used a memetic approach to take “good polygons” from two good solutions, then
triangulated rest.

e Team Salzburg

e Tried implementing known 3-Approximations
e Used recursion from high degree vertices instead of doing globally random flipping

33

Overview

Basic Framework: Local Search
. CG:SHOP 2020

. CG:SHOP 2021

. CG:SHOP 2022

A W N =

34

CG:SHOP2021 - Team gitastrophe

All of us have left UBC. Paul (also UBC alumnus) joined our team, making us quite diverse.
Team members:

e Paul Liu (Stanford)

e Jack Spalding-Jamieson (Waterloo)

e Brandon Zhang (Working)
e Da Wei (David) Zheng (UIUC)

35

CG:SHOP2021 - Preview of Results

MAX

Rank Team

1 Shadoks

2 UNIST

3 gitastrophe

SUM

Rank Team

1 gitastrophe
2 UNIST
3 Shadoks

Junior
team

Junior
team

v

Score MAX

202.9375

174.0180514765

159.5472362028

Score MAX

159.5472362028

174.0180514765

202.9375

Score SUM

180.4952611231

191.7893810645

198.494347968

Score SUM

198.494347968

191.7893810645

180.4952611231

Best
solutions
(MAX)
202

14

24

Best
solutions
(MAX)
24

14

202

Best
solutions
(SUM)

120

57

Best
solutions
(SUM)
57

120

36

CG:SHOP2021 - Problem Statement

Given a set R of n robots, find a collision-free set of parallel motions for unit-square robots in
the square grid Z?2 that minimizes total distance travelled or minimizes makespan (different
problem categories).

Animation: Robot motion planning demo

37

https://jacksj.com/docstore/talks/cgshop-collection/videos/long_distance_video.mp4

CG:SHOP2021 - Robot Animation

Animation: Roomba robot motion demo

Creative Commons attributions: " Doomba” model by PolyDucky, " Cardboard Box" model by Agustin

Honnun.

38

https://jacksj.com/docstore/talks/cgshop-collection/videos/roombas.mp4

CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

39

CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

1. Initialization

39

CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

1. Initialization

e Basic initializations
e Improved initializations

39

CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

1. Initialization

e Basic initializations
e Improved initializations

2. Optimization

39

CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

1. Initialization
e Basic initializations
e Improved initializations
2. Optimization
e Basic greedy local search (1-opt)
e k-opt
e Algorithm engineering

39

Initialization

Instances were boundaryless: Robots can move far away.

40

CG:SHOP2021 - Initialization

Instances were boundaryless: Robots can move far away.
We used the following algorithm:

o "o 1. Compute a set of far away intermediate locations

40

Instances were boundaryless: Robots can move far away.

We used the following algorithm:

m] o
o
s _ "o 5 1. Compute a set of far away intermediate locations
u} u] m]
oo mmc o O 2. Compute min-cost matching of robots start and end
o a a
5 locations to intermediate locations
o o m}
O o o
o [m] o
o m}
o o o
o m}

40

Instances were boundaryless: Robots can move far away.

We used the following algorithm:
1. Compute a set of far away intermediate locations

2. Compute min-cost matching of robots start and end
locations to intermediate locations

3. Route robots from start locations to intermediate
positions by order of start location depth

40

Instances were boundaryless: Robots can move far away.

We used the following algorithm:

7,0 5 . 1. Compute a set of far away intermediate locations
S Z . 2. Compute min-cost matching of robots start and end
DD) DD DD : locations to intermediate locations
oo - 3. Route robots from start locations to intermediate
4 A - ° DD o positions by order of start location depth
. s 4. Route robots from intermediate locations to target
o . locations in order of end location depth (guaranteed by

previous step)

40

CG:SHOP2021 - Improved Initialization

Instances were boundaryless: Robots can move far away.
We used the following algorithm:

7,0 5 . 1. Compute a set of far away intermediate locations
S Z . 2. Compute min-cost matching of robots start and end
DD) DD DD : locations to intermediate locations
oo - 3. Route robots from start locations to intermediate
4 A - ° DD o positions by order of start location depth
o, ", 0" 4. Route robots from start locations to target locations
o . in order of end location depth (guaranteed by previous

step)

40

CG:SHOP2021 - Initialization - Video

Videos of robot movement as robots are routed from start locations to target locations

Animation: Robot initialization routing

41

https://jacksj.com/docstore/talks/cgshop-collection/videos/four_part_initialization.mp4

CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S:

e Pick a robot r and remove its path from S

42

CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S:

e Pick a robot r and remove its path from S

e Compute a new shortest path for r in the grid-time graph, respecting the other robots

42

CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S:

e Pick a robot r and remove its path from S
e Compute a new shortest path for r in the grid-time graph, respecting the other robots

e Repeat until no robot can shorten its path

42

CG:SHOP2021 - Optimization - 1-opt

Animation: 1-opt optimization demo

43

https://jacksj.com/docstore/talks/cgshop-collection/videos/small3_1opt.mp4

CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.

44

CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.
Traditional k-opt (optimally solving for k robots at once) would be better, but is slow.

44

CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.
Traditional k-opt (optimally solving for k robots at once) would be better, but is slow.
Instead, use heuristic k-opt:

e Pick k robots {r,...,rx} € R and remove their paths from S

e Compute a new shortest path for r; in the grid-time graph, respecting the other robots

e Repeat many times

44

CG:SHOP2021 - Optimization - k-opt

Animation: k-opt optimization demo

45

https://jacksj.com/docstore/talks/cgshop-collection/videos/small_free_003.mp4

CG:SHOP2021 - Optimization - Algorithm Engineering

How do we make our optimization iterations run quickly and efficiently?

e To find paths, use A* with Manhattan distance as heuristic.
e Limit path-finding algorithm to explore locally around original path for some radius R.

e Choose k in the k-opt to balance runtime vs improvement.

46

- Optimization - Adjusting R

Makespan and distance plots as R varied. k was kept fixed at 7.

Final challenge makespan score: 126. Final distance score: 43 437.

180 1 50000 -
175
c @ 48000 -
2170+ Q
] i
= | ko)
2 165 8 46000 -
160 -
155 4 44000 -
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) Time (s)

47

- Optimization - Adjusting k

Makespan and distance plots as k varied. R was kept fixed at 20.

Final challenge makespan score: 126. Final distance score: 43 437.

— k=1

180 k=2 50000 4

175 A — k=3

— k=7

c o 48000 A
§ 170 4 —— k=10 Q
Q S
< | o
2 165 2 46000 A

160 A

155 4 44000 4

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (s) Time (s)

48

CG:SHOP2021 - Results

Total: 203 instances

MAX

Rank Team

1 Shadoks
2 UNIST
3 gitastrophe

SUM

Rank Team

1 gitastrophe
2 UNIST
3 Shadoks

Junior
team

Junior
team

v

Score MAX

202.9375

174.0180514765

159.5472362028

Score MAX

159.5472362028

174.0180514765

202.9375

Score SUM

180.4952611231

191.7893810645

198.494347968

Score SUM

198.494347968

191.7893810645

180.4952611231

Best
solutions
(MAX)
202

14

24

Best
solutions
(MAX)
24

14

202

Best
solutions
(SUM)

120

57

Best
solutions
(SUM)
57

120

49

CG:SHOP2021 - Results

MAX

Rank Team

1 Shadoks

2 UNIST

3 gitastrophe

SUM

Rank Team

1 gitastrophe
2 UNIST

3 Shadoks

Junior
team

Junior
team

v

Score MAX

202.9375

174.0180514765

159.5472362028

Score MAX

159.5472362028

174.0180514765

202.9375

e Team Shadoks' approach was by far the best:

optimization. . .

Score SUM

180.4952611231

191.7893810645

198.494347968

Score SUM

198.494347968

191.7893810645

180.4952611231

Best
solutions
(MAX)
202

14

24

#Best
solutions
(MAX)
24

14

202

Best
solutions
(SUM)

0

120

57

#Best
solutions
(Sum)
57

120

0

They did not even try to optimize for SUM.
e Two reasons: Smarter initialization + a new local search technique named conflict

49

Overview

Basic Framework: Local Search
. CG:SHOP 2020

. CG:SHOP 2021

. CG:SHOP 2022

A W N =

50

CG:SHOP2022 - Team gitastrophe

Team members:

e Jack Spalding-Jamieson (Waterloo)
e Brandon Zhang (Working)
e Da Wei (David) Zheng (UIUC)

51

CG:SHOP2022 - Standings Preview

Rank

Team

Shadoks

gitastrophe

LASAOFOOFUBESTINNRRALLDECA

TU Wien

Junior team

Score

225.0

217.48574745772237

211.80303248033107

195.9666148217582

52

Problem Statement

Input: A straight-line drawing of a graph G = (V, E).
Output: A partition of G into plane subgraphs (COLOURS).
Goal: Minimize the number of subgraphs.

CG:SHOP2022 - Reduction to Vertex Colouring

Construct a conflict graph G’:

o V(G') = E(G)

e E(G’) := the pairwise intersections of the straight-line edges.

-

54

Approach - Overview

Two main components:

1. (Very basic) Initialization
2. Local search optimization

e Conflict Optimization
e Alternative heuristics

55

Initialization (Very Simple)

e Start with all the edges uncoloured.

e Loop through the straight-line edges in some order, colour them greedily.

Good orderings:

e Sorted by slope.
e Sorted by decreasing order of degree in the conflict graph (Welsh and Powell. 1967).

56

Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

e Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

e Very broad idea, can be applied this year as well.

57

Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

e Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

e Very broad idea, can be applied this year as well.
Main idea:

e Eliminate an entire colour class without giving the edges a new colour.

57

Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

e Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

e Very broad idea, can be applied this year as well.
Main idea:

e Eliminate an entire colour class without giving the edges a new colour.

e Try to colour each uncoloured edge while minimizing a conflict score (a heuristic).

57

Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

e Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

e Very broad idea, can be applied this year as well.
Main idea:

e Eliminate an entire colour class without giving the edges a new colour.
e Try to colour each uncoloured edge while minimizing a conflict score (a heuristic).

e Uncolour the conflicting edges when colouring an edge.

57

Optimization Example (1)

p-

Optimization Example (4)

Step 1: Eliminate a Colour

Optimization Example (5)

Choose blue to eliminate

Optimization Example (6)

Uncolour all blue edges

Optimization Example (7)

Look at an uncoloured edge

Optimization Example (8)

Pick a new colour according to a “conflict score” heuristic

Choose orange

Optimization Example (9)

-

Colour the edge and uncolour all conflicting edges

[

Optimization Example (10)

-

If there is one: Look at an uncoloured edge

[

Optimization Example (11)

[

Pick a new colour according to a “conflict score” heuristic

Choose green

Optimization Example (12)

/

[

Pick a new colour according to a “conflict score” heuristic

Choose green

67

Optimization Example (13)

One colour down!

68

Optimization Example (14)

/

[

Let’s try to eliminate another one: Purple

69

Optimization Example (15)

¥

/

[

Uncolour all the purple edges

70

Optimization Example (16)

Look at an uncoloured edge

71

Optimization Example (17)

/

[

Choose a colour based on a “conflict score”
Choose red

72

Optimization Example (18)

/

[

Colour the edge red and uncolour any conflicting edges

(none in this case)

73

Optimization Example (19)

¥

/

[

Look at another uncoloured edge

74

Optimization Example (20)

/

[

Choose a colour for it based on conflict score
Choose red

75

Optimization Example (21)

/

[

Colour the edge red and uncolour any conflicting edges

76

Optimization Example (22)

¥

/

[

Look at an uncoloured edge

7

Optimization Example (23)

/

[

Choose a colour based on a “conflict score”

Choose green

78

Optimization Example (24)

/

[

Colour the edge green and uncolour any conflicting edges

79

Optimization Example (25)

-

/

[

Look at an uncoloured edge

Optimization Example (26)

/

[

Choose a colour based on a “conflict score”

Choose green

Optimization Example (27)

/

[

Colour the edge green and uncolour any conflicting edges

Optimization Example (28)

Look at an uncoloured edge

83

Optimization Example (29)

/

[

Choose a colour based on a “conflict score”
Choose red

84

Optimization Example (30)

/

[

Colour the edge red and uncolour any conflicting edges

85

Optimization Example (31)

86

Optimization - Heuristics

Conflict score:

Z 1+q(e)?
e/EC,'
(e’,e)eE(G")

g(e’) is the number of times e’ was uncoloured during the current “infeasible” stage.

87

Optimization - Heuristics

Conflict score:

Z 1+q(e)?
e/EC,'
(e’,e)eE(G")

g(e’) is the number of times e’ was uncoloured during the current “infeasible” stage.

Alternative:

oo

e/EC,'
(¢, e)€E(G)

87

Are we using the geometry?

Initialization stage: Yes, explicitly.

88

Are we using the geometry?

Initialization stage: Yes, explicitly.
Conflict optimization stage: Kind of. .. this algorithm seems to perform best on geometric data.

88

Comparison to Standard Vertex Colouring Approaches

Relative number of colours after 10 minutes vs our algorithm
B HEAD W GACOL

L

20

-20

-40

-60

3 Logh 0
B N e il D D T
PSS E IS E Tl Pl ol or &S
F oY A oF OO VO E Y e &Y R
¥ 8 @b b s SO S
%&%&%%

Dimacs Instance

Figure 1: 10 minutes of our algorithm versus standard approaches on dimacs graph colouring instances.
89

Thank you for listening

Fin.

90

