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NP-Hard Geometry Optimization Problems

Many geometry optimization problems are NP-hard (e.g. Euclidean TSP).

NP-Hard ̸= impossible:

• Exponential time algorithms

• SAT/SMT/ILP solvers

• Approximation algorithms

• Rounding methods, greedy solutions, etc.

• Heuristic algorithms

• Local search techniques

2
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About the CG:SHOP challenge

Computational Geometry: Solving Hard Optimization Problems (CG:SHOP)

is an annual competition that is part of CG Week.

• 2019-2022: Fairly “combinatorial” problems.

• 2023-2025: Solutions use rational coordinates.

• 2026: More “combinatorial” again.

This talk: 2020-2022.
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Overview

1. Basic Framework: Local Search

2. CG:SHOP 2020

3. CG:SHOP 2021

4. CG:SHOP 2022
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Basic Framework: Local Search

1. Start at a decent feasible solution.

2. Repeatedly go to good “nearby” feasible solutions.

Score

Search space (simplified)
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Elements needed for local search

• Need initial solution(s)

• Need to define “nearby” solutions (reconfiguration graph)

• How to decide which nearby solution to choose?

• Greedy choice: Look at all, move if it’s better
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Variations of Local Search

1. Generating different initialization to start from

• Problem-specific ideas

• Genetic algorithms that “merge” feasible solutions

2. Improving on greedy local search

• Randomness + Restarts (repeated trials give different results)

• Simulated Annealing (sometimes allow bad moves)

• k-opt (make k changes at once)

• Conflict optimization (go outside the feasible region)
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CG:SHOP2020 - Team UBC

Team members: Jack Spalding-Jamieson, Brandon Zhang, and Da Wei (David) Zheng.
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CG:SHOP2020 - Preview of Results
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CG:SHOP2020 - Problem Statement

Input: n points in the plane (S).

Output: A partitition of their convex hull into convex faces whose vertex set is S .
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CG:SHOP2020 - Approach - Overview

• Small instances (< 100 vertices): solved exactly with MAXSAT formulation.

• Large instances: Local search method

1. Initialization: Delauney triangulation

2. Local search move type #1: Remove edges

3. Local search move type #2: Rotate edges
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CG:SHOP2020 - Initialization

• The Delauney triangulation was used as the starting point.
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CG:SHOP2020 - Edge Removal Moves

• Some edges can be removed while keeping faces convex.

• If there are many edges, remove edges in a random order.

15



CG:SHOP2020 - Rotation Moves

• Half-edges can often be rotated, so long as both incident faces remain convex.

v

u

ba
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CG:SHOP2020 - Rotation Moves (2)

• Half-edges can be rotated so long as no angles become reflex.

• In this example, convexity is preserved:

v

u

ba v

u

ba

17



CG:SHOP2020 - Rotation Moves (3)

• In this example, the bottom angle becomes reflexive:
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CG:SHOP2020 - Rotation Moves (4)

• In this example, the top angle becomes reflexive:
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CG:SHOP2020 - Rotation Moves (5)

• There may be many edges that can be rotated.

• Choose a random one and do a random walk through the reconfiguration space of convex

partitions.
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CG:SHOP2020 - Approach Step 3 - Keeping Track of Half-Edges

• We keep an up-to-date list of half-edges that can be rotated.

• There is a constant number of different half-edges that need to be updated.

v

u

ba

In green: the half-edges that need to be updated.
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CG:SHOP2020 - Collinear points

For a general position point set, all (interior) vertices have degree ≥ 3.

Can do better with collinear points.
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CG:SHOP2020 - Extra instances

The organizers realized this as well and added many instances called rop and ortho-rect that

looked like this:

Starting with Delauney triangulation did ok, but we can do better.
23



CG:SHOP2020 - Initialization (v2)

• Joining collinear points together created degree 2 vertices. This is good.

• For these instances we joined points sharing the same x , y , or the same slope, then joined

the end points together in a way that creates a convex partition.
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CG:SHOP2020 - Initialization (v2)

• Afterwards, the local search would remove extraneous edges.

Before running local search.
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CG:SHOP2020 - Results - Hardware

Ran on some UBC servers.

• Ran local search continuously for about 16 days.

• Consumed approximately 1.5 years of CPU time.
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CG:SHOP2020 - Results - Demo

Instance london-0000040 with 40 points, 469 iterations, and 64 final edges.

Animation: london-0000040 local search demo (469 iterations)

28

https://jacksj.com/docstore/talks/cgshop-collection/videos/out.mp4


CG:SHOP2020 - Results - Visualization

• Most of the instance groups and our respective scores are plotted on the table below:
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CG:SHOP2020 - Results - Large euro-night instance

• For the 100 000 point euro-night instance, y -coordinates were in [0, 57 598] =⇒ many

shared y -values.

(40,000 point euro-night instance)
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CG:SHOP2020 - Results - Large euro-night instance

Optimized large euro-night instance with 40 000 points from horizontally-joined initialization.
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CG:SHOP2020 - Results

Total: 346 instances
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CG:SHOP2020 - Techniques by the Other Teams

• Team Haute-Alsace

• Used a memetic approach to take “good polygons” from two good solutions, then

triangulated rest.

• Team Salzburg

• Tried implementing known 3-Approximations

• Used recursion from high degree vertices instead of doing globally random flipping
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CG:SHOP2021 - Team gitastrophe

All of us have left UBC. Paul (also UBC alumnus) joined our team, making us quite diverse.

Team members:

• Paul Liu (Stanford)

• Jack Spalding-Jamieson (Waterloo)

• Brandon Zhang (Working)

• Da Wei (David) Zheng (UIUC)
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CG:SHOP2021 - Preview of Results
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CG:SHOP2021 - Problem Statement

Given a set R of n robots, find a collision-free set of parallel motions for unit-square robots in

the square grid Z2 that minimizes total distance travelled or minimizes makespan (different

problem categories).

Animation: Robot motion planning demo

37

https://jacksj.com/docstore/talks/cgshop-collection/videos/long_distance_video.mp4


CG:SHOP2021 - Robot Animation

Animation: Roomba robot motion demo

Creative Commons attributions: ”Doomba” model by PolyDucky, ”Cardboard Box” model by Agust́ın

Hönnun.

38

https://jacksj.com/docstore/talks/cgshop-collection/videos/roombas.mp4


CG:SHOP2021 - Approach - Overview

Another local search approach. Two main components:

1. Initialization

• Basic initializations

• Improved initializations

2. Optimization

• Basic greedy local search (1-opt)

• k-opt

• Algorithm engineering

39
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CG:SHOP2021 - Initialization

Instances were boundaryless: Robots can move far away.

We used the following algorithm:

1. Compute a set of far away intermediate locations

2. Compute min-cost matching of robots start and end

locations to intermediate locations

3. Route robots from start locations to intermediate

positions by order of start location depth

4. Route robots from to target locations in order of end

location depth (guaranteed by previous step)
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CG:SHOP2021 - Improved Initialization

Instances were boundaryless: Robots can move far away.

We used the following algorithm:

1. Compute a set of far away intermediate locations

2. Compute min-cost matching of robots start and end

locations to intermediate locations

3. Route robots from start locations to intermediate

positions by order of start location depth

4. Route robots from start locations to target locations

in order of end location depth (guaranteed by previous

step)

40



CG:SHOP2021 - Initialization - Video

Videos of robot movement as robots are routed from start locations to target locations

Animation: Robot initialization routing

41

https://jacksj.com/docstore/talks/cgshop-collection/videos/four_part_initialization.mp4


CG:SHOP2021 - Optimization - Basic Greedy Local Optimization

Given a feasible solution S :

• Pick a robot r and remove its path from S

• Compute a new shortest path for r in the grid-time graph, respecting the other robots

• Repeat until no robot can shorten its path

42
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CG:SHOP2021 - Optimization - 1-opt

Animation: 1-opt optimization demo
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https://jacksj.com/docstore/talks/cgshop-collection/videos/small3_1opt.mp4


CG:SHOP2021 - Optimization - k-opt

The 1-opt approach gets stuck in local minima easily.

Traditional k-opt (optimally solving for k robots at once) would be better, but is slow.

Instead, use heuristic k-opt:

• Pick k robots {r1, ..., rk} ∈ R and remove their paths from S

• Compute a new shortest path for ri in the grid-time graph, respecting the other robots

• Repeat many times
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CG:SHOP2021 - Optimization - k-opt

Animation: k-opt optimization demo

45

https://jacksj.com/docstore/talks/cgshop-collection/videos/small_free_003.mp4


CG:SHOP2021 - Optimization - Algorithm Engineering

How do we make our optimization iterations run quickly and efficiently?

• To find paths, use A* with Manhattan distance as heuristic.

• Limit path-finding algorithm to explore locally around original path for some radius R.

• Choose k in the k-opt to balance runtime vs improvement.

46



CG:SHOP2021 - Optimization - Adjusting R

Makespan and distance plots as R varied. k was kept fixed at 7.

Final challenge makespan score: 126. Final distance score: 43 437.
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CG:SHOP2021 - Optimization - Adjusting k

Makespan and distance plots as k varied. R was kept fixed at 20.

Final challenge makespan score: 126. Final distance score: 43 437.
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CG:SHOP2021 - Results

Total: 203 instances

• Team Shadoks’ approach was by far the best: They did not even try to optimize for SUM.

• Two reasons: Smarter initialization + a new local search technique named conflict

optimization. . .

49
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CG:SHOP2022 - Team gitastrophe

Team members:

• Jack Spalding-Jamieson (Waterloo)

• Brandon Zhang (Working)

• Da Wei (David) Zheng (UIUC)
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CG:SHOP2022 - Standings Preview
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Problem Statement

Input: A straight-line drawing of a graph G = (V ,E ).

Output: A partition of G into plane subgraphs (COLOURS).

Goal: Minimize the number of subgraphs.

53



CG:SHOP2022 - Reduction to Vertex Colouring

Construct a conflict graph G ′:

• V (G ′) := E (G )

• E (G ′) := the pairwise intersections of the straight-line edges.

54



Approach - Overview

Two main components:

1. (Very basic) Initialization

2. Local search optimization

• Conflict Optimization

• Alternative heuristics

55



Initialization (Very Simple)

• Start with all the edges uncoloured.

• Loop through the straight-line edges in some order, colour them greedily.

Good orderings:

• Sorted by slope.

• Sorted by decreasing order of degree in the conflict graph (Welsh and Powell. 1967).

56



Optimization - Conflict Optimization

Conflict-Based Local Search/Conflict Optimization

• Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

• Very broad idea, can be applied this year as well.

Main idea:

• Eliminate an entire colour class without giving the edges a new colour.

• Try to colour each uncoloured edge while minimizing a conflict score (a heuristic).

• Uncolour the conflicting edges when colouring an edge.
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Optimization Example (1)

58



Optimization Example (4)

Step 1: Eliminate a Colour

59



Optimization Example (5)

Choose blue to eliminate
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Optimization Example (6)

Uncolour all blue edges
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Optimization Example (7)

Look at an uncoloured edge
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Optimization Example (8)

Pick a new colour according to a “conflict score” heuristic

Choose orange
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Optimization Example (9)

Colour the edge and uncolour all conflicting edges
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Optimization Example (10)

If there is one: Look at an uncoloured edge

65



Optimization Example (11)

Pick a new colour according to a “conflict score” heuristic

Choose green
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Optimization Example (12)

Pick a new colour according to a “conflict score” heuristic

Choose green
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Optimization Example (13)

One colour down!
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Optimization Example (14)

Let’s try to eliminate another one: Purple
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Optimization Example (15)

Uncolour all the purple edges
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Optimization Example (16)

Look at an uncoloured edge
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Optimization Example (17)

Choose a colour based on a “conflict score”

Choose red
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Optimization Example (18)

Colour the edge red and uncolour any conflicting edges

(none in this case)
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Optimization Example (19)

Look at another uncoloured edge
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Optimization Example (20)

Choose a colour for it based on conflict score

Choose red
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Optimization Example (21)

Colour the edge red and uncolour any conflicting edges
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Optimization Example (22)

Look at an uncoloured edge
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Optimization Example (23)

Choose a colour based on a “conflict score”

Choose green
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Optimization Example (24)

Colour the edge green and uncolour any conflicting edges
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Optimization Example (25)

Look at an uncoloured edge
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Optimization Example (26)

Choose a colour based on a “conflict score”

Choose green
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Optimization Example (27)

Colour the edge green and uncolour any conflicting edges
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Optimization Example (28)

Look at an uncoloured edge
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Optimization Example (29)

Choose a colour based on a “conflict score”

Choose red
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Optimization Example (30)

Colour the edge red and uncolour any conflicting edges
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Optimization Example (31)

Done!
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Optimization - Heuristics

Conflict score: ∑
e′∈Ci

(e′,e)∈E(G ′)

1 + q(e′)2

q(e′) is the number of times e′ was uncoloured during the current “infeasible” stage.

Alternative: ∑
e′∈Ci

(e′,e)∈E(G ′)

1
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Are we using the geometry?

Initialization stage: Yes, explicitly.

Conflict optimization stage: Kind of. . . this algorithm seems to perform best on geometric data.
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Comparison to Standard Vertex Colouring Approaches

Figure 1: 10 minutes of our algorithm versus standard approaches on dimacs graph colouring instances.
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Thank you for listening

Fin.
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