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k-Means/Sum of Squares Clustering: Quick Review

Input

k: a parameter (e.g., k = 3)

n d-dimensional vectors

Output

Clusters {Ci}i∈[k] with centroids {µi}i∈[k]

Objective: min
k∑

i=1

∑
x∈Ci

∥x− µi∥2

(Equivalent by Huygens’ theorem)
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k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf
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k-Nearest-Neighbor Search

r
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Approximate k-Nearest-Neighbor Search

r (1 + )r

Approximation factor: (1 + ε)
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Approximate k-Nearest-Neighbor Search

r (1 + )r

Approximation factor: (1 + ε)
Recall: 2

4
= 0.5
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Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:

Quantization

Space-partitioning/Clustering

Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20, 000, 000 points requires 16GB (plus data structure size).
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Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Time for One Lloyd Iter (k = n/128)
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1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263
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Many would benefit from large k (k ≈ n/c for small
c), but current methods are too slow.

All practical methods take Ω(k2) time.

Focus on large n ∈ [106, 109], k ≈ n/c, and d ≥ 100.
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Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500
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Checkpoint 1

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

k-Means Clustering

Exact NNS

GPU Acceleration

Basically out-of-core ANNS with n base points

k base points
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Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.
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1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Key observation: Assignment step is a
nearest-neighbour problem.

Lloyd’s algorithm is very limited in theory.
But it’s very good in practice.

Iter 4b: Compute Means
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Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest
neighbor search (ANNS) data structure on the
centroids.

Assignment: Use the data structure to assign
each data point to its nearest centroid
approximately.

Mean Computation: Unchanged
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search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Why ANNS? Exact-NN has a linear lower bound in
high-dimensions1.
ANNS has strong lower bounds too2, but good
widely-used heuristics exist.
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Experiment:
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Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Conclusions:

Dimension reduction (quantization) generally bad

HNSW3 is really good!
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Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Conclusions:

Dimension reduction (quantization) generally bad

HNSW3 is really good!
Almost as good as Nvidia’s own GPU
imlementation.4
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Checkpoint 2

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

k-Means Clustering

In-Memory ANNSExact NNS

HNSWGPU Acceleration

Basically out-of-core ANNS with n base points

k base points k base points
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HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result
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Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

robustness — good solutions even if seed points bad

consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).
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Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Extra “seed points” from prev assignment:
Seeded ANNS
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Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Multiple extra “seed points” from prev
assignment: Seeded ANNS

Often also improve:

Min iteration threshold

Bulk queries for more seed points

Now (mostly) beating GPU implementations
with CPU.
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More Results
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Checkpoint 3

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

k-Means Clustering

In-Memory ANNS In-Memory Seeded ANNSExact NNS

HNSWGPU Acceleration

Basically out-of-core ANNS with n base points
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Seeded HNSW
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Open Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don’t seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling-dimension1.

arxiv.org/abs/2502.06163
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Open Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don’t seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling-dimension1.

arxiv.org/abs/2502.06163
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