Jack Spalding-Jamieson (Jack S-J)

jacksj@uwaterloo.ca

Scalable k-Means Clustering for Large k via Seeded Approximate
Nearest-Neighbor Search

Joint work with Eliot Robson and Da Wei Zheng

f.:.\..:'.O.
I: :-“> ® e
p J;- .
2 o % e ° :. ’ .
. ° :L& C..o “E’:g:dl.
PaeTe cseaee
% : ® o, .o

= k: a parameter (e.g., k = 3)

= n d-dimensional vectors

1/18

L4 c: .':.:'.0 °
::? ® .
* o % 4 .: .o
° K 1‘.0..0 ".’{.ﬁ
S el
% : ° ®e .'

= k: a parameter (e.g., k = 3)

= n d-dimensional vectors

P o '.:'.o .
e ':’b ° .
‘s o % P 0: ..
°‘ O..o ".:’{N
°f8 S, o °® e
° 0" O Q...\. A

*= Clusters {Ci};cqx) with centroids {1 }icx

k
= Objective: minz Z llz -yl

i=1 z,yeC;

1/18

'1' |

° .1|.1f '

%

»
L
.

.

N

= k: a parameter (e.g., k = 3)

= n d-dimensional vectors

@ .; ...:..0 °
l d:'o A

L)
°
%
°

3o
?

. :; o

* Clusters {C;};c(r with centroids {u: }iex

Kk
= Objective: minz Z lIx — gl

i=1 xeC;

(Equivalent by Huygens’ theorem)

1/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM
®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM
®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:
* Local search: Lloyd’s algorithm®*
» Time Complexity per iteration: O(nkd)

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM
®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:
* Local search: Lloyd's algorithm*

» Time Complexity per iteration: O(nkd)
= Approximation algorithms:

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM
®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:
* Local search: Lloyd's algorithm*
» Time Complexity per iteration: O(nkd)
= Approximation algorithms:
* k-means++2
» O(nkd) time
» 8(Ink + 2) expected approximation

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM
®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:
* Local search: Lloyd's algorithm*
» Time Complexity per iteration: O(nkd)
= Approximation algorithms:
* k-means++?
» O(nkd) time
» 8(Ink + 2) expected approximation
* k-means| |35

» O(c1-nd+ O(ca - k2d) time, ¢1, co small in practice
» O(log k) expected approximation

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM

®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:
* Local search: Lloyd's algorithm*
» Time Complexity per iteration: O(nkd)
= Approximation algorithms:
» k-means++2
» O(nkd) time
» 8(Ink + 2) expected approximation
* k-means||3°

» O(c1-nd+ O(cs - k2d) time, ¢1, c2 small in practice
» O(log k) expected approximation

Better approximations known, not used in practice.

Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

2Arthur & Vassilvitskii, k-means++-: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means--

*Lloyd, Least square quantization in PCM
®Bahmani’s slides on k-means| |

2/18

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

3/18

3/18

3/18

4/18

~

S

.
s,
N,

-

’ []
x
/

4/18

(L+e)r

Approximation factor: (1+¢)

5/18

Approximation factor: (1+¢)

Recall:

5/18

=0.5

2
1

ANNS has three broad families of practical approaches:
= Quantization
& Space-partitioning/Clustering
= Search-graphs

Quantization is normally used alongside the other two.

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:
= Quantization
& Space-partitioning/Clustering
= Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:
= Quantization
& Space-partitioning/Clustering
= Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:
= Quantization
& Space-partitioning/Clustering
= Search-graphs

Quantization is normally used alongside the other two.
Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20,000, 000 points requires 16GB (plus data structure size).

6/18

Some Motivation

Time for One Lloyd Iter (k = n/128)

107t o
“Vector Similarity Search” is very popular in machine O skl

learning recently, with a lot of active development. s ® ML

10

S 103

e 10
o
O
b

10!

107!

10° 108
n

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search 718

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Some Motivation

Time for One Lloyd Iter (k = n/128)
107 L

® scikit-learn
® cuML

“Vector Similarity Search” is very popular in machine

learning recently, with a lot of active development.

5
= Many methods used in industry for massive 10

datasets!">** solve k-means as a sub-routine,

and would benefit from very large k. § 103
9]
(9]
b

10!

107!

106 108
n

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search 718

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Some Motivation

Time for One Lloyd Iter (k = n/128)

107t o
“Vector Similarity Search” is very popular in machine O skl

learning recently, with a lot of active development. s ® cuML
= Many methods used in industry for massive 10
datasets’?3* solve k-means as a sub-routine, and
. [}
would benefit from very large k. S 103
= Many would benefit from large k (k ~ n/c for S
small ¢), but current methods are too slow. b 10!
1071
106 108
n

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search 718

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Some Motivation

Time for One Lloyd Iter (k = n/128)

107t o
“Vector Similarity Search” is very popular in machine O skl

learning recently, with a lot of active development. s ® cuML
= Many methods used in industry for massive 10
datasets!'>>* solve k-means as a sub-routine, and
would benefit from very large k. § 103
= Many would benefit from large k (k ~ n/c for small o
¢), but current methods are too slow. b 10!
All practical methods take Q(k?) time.
1071
106 108
n

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search 718

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Some Motivation

Time for One Lloyd Iter (k = n/128)

107 L

® scikit-learn
® cuML

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

=
o
4

= Many methods used in industry for massive

datasets'>** solve k-means as a sub-routine, and
. 0
would benefit from very large k. S 103
* Many would benefit from large k (k ~ n/c for small S
¢), but current methods are too slow. b 10!
All practical methods take Q(k?) time.
Focus on large n € [10°,10%], k =~ n/c, and d > 100. 10-1

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

108

7/18

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

= Many methods used in industry for massive
datasets'>?* solve k-means as a sub-routine, and
would benefit from very large k.

= Many would benefit from large k (k ~ n/c for small
¢), but current methods are too slow.

All practical methods take Q(k?) time.

Focus on large n € [10°,10°], k = n/c, and d > 100.
= Days to weeks with current methods! —

seconds

Time for One Lloyd Iter (k = n/128)

107

10°

103

10!

107!

® scikit-learn
® cuML

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

108

7/18

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Some Motivation

Time for One Lloyd Iter (k = n/128)

107} -
“Vector Similarity Search” is very popular in machine ® scikit-learn
. . . ® cuML
learning recently, with a lot of active development. 5
= Many methods used in industry for massive 10
datasets'>3* solve k-means as a sub-routine, and
. (%]
would benefit from very large k. S 103
= Many would benefit from large k (k ~ n/c for small S
¢), but current methods are too slow. b 10!
All practical methods take Q(k?) time.
Focus on large n € [10°,10°], k =~ n/c, and d > 100. 10-1
= Days to weeks with current methods! —
Focus on real performance, not asymptotics. 106

!Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2 Jégou et al., Product Quantization for Nearest Neighbor Search

3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
“Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

108

7/18

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

Typical approach:

8/18

Bottleneck Testing

Typical approach:

= Init centroids with one of:
= k-means++
» k-means]| |
» uniform random sampling

8/18

Typical approach:
= Init

centroids with one of:
»

k-means++

» k-means] |

* uniform random sampling

= Lloyd’s algorithm for local search

8/18

Typical approach:
= Init centroids with one of:

* k-means++
* k-means]| |
* uniform random sampling

= Lloyd's algorithm for local search
= lterate until timeout

8/18

Bottleneck Testing

Typical approach:
= Init centroids with one of:

* k-means++
» k-means| |
= uniform random sampling

= Lloyd's algorithm for local search
= lterate until timeout

= Accelerate each step on GPU

8/18

Bottleneck Testing

Typical approach:
= Init centroids with one of:

* k-means++
» k-means| |
= uniform random sampling

= Lloyd's algorithm for local search
= lterate until timeout

= Accelerate each step on GPU

Small k: k-means++ and || are very good

8/18

Bottleneck Testing

Typical approach:
= Init centroids with one of:

* k-means++
» k-means| |
= uniform random sampling

= Lloyd's algorithm for local search
= lterate until timeout

= Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = le4.

8/18

Bottleneck Testing

Typical approach:
= Init centroids with one of:

* k-means++
» k-means]| |
= uniform random sampling

= Lloyd's algorithm for local search
= lterate until timeout

= Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = led.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm

Score over t|me in dpr5m base W|th k=10000
T T
- PyTorchKMeansGPU kmeans++gpu
—®— PyTorchKMeansGPU - random

43 - —®— PyTorchKMeansGPU - kmeans||gpu |

42

4141

Mean-Squared Error

40]

0 100 200 300 400 500
Time(s)

8/18

Checkpoint 1

Out-of-Core Similarity Search

(used by your favourite semantic search engine)

Basically out-of-core ANNS with n base points

'

k-Means Clustering

/

Exact NNS

k base points

.

GPU Acceleration

9/18

1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it
Bottleneck is Assignment step

@ .: .{.:... ®
o.:‘} ® e
Y)
X DY B LS
Lk A
. .‘°‘ o o '....’9 *.

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k& centroids uniformly
from the dataset.

2. lterate (local search):

Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.
Bottleneck is Assignment step.

Initialize Centroids

®
°

t
®
°

°

&

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):

Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.
Bottleneck is Assignment step.

Iter 1la: Assign Labels

4 .E...:.:...
o.:“ ® e
‘0‘0 o

¢ ",
° - o o.

.. QO

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):

Assignment: Assign each point to the
nearest centroid.

Mean Computation: Update each centroid
to be the average of points assigned to it.
Bottleneck is Assignment step.

Iter 1b: Compute Means

®

-.
::“.o

&

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.
Bottleneck is Assignment step.

Iter 2a: Assign Labels

4 .E...::.. °
o.:“.. L4

o
n

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.
2. lterate (local search):

Assignment: Assign each point to the
nearest centroid.

Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 2b: Compute Means

10/18

Lloyd’s k-Means Method

Iter 3a: Assign Labels

1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it. °
Bottleneck is Assignment step.

° ° [] [

10/18

Lloyd’s k-Means Method

Iter 3b: Compute Means

%o
Y []
® 9 °
0o
e e e . . o
1. Initialization: Sample k£ centroids uniformly ® oo %o o
from the dataset. °® °.°
2. lterate (local search): ° z e °
Assignment: Assign each point to the) ¢
nearest centroid. ° o
Mean Computation: Update each centroid ® ° o
to be the average of points assigned to it. " ° P PO)
[] [] [
Bottleneck is Assignment step. o . o
i g p K ‘..g . ": Ny,
'YX o ° °
° ° °
o %% e ° « ..‘. °
o o (L)
% . °, °

10/18

Lloyd’s k-Means Method

Iter 4a: Assign Labels

o9
Y []
® 9 °
N L %, .0
1. Initialization: Sample k£ centroids uniformly ® oo %o o
from the dataset. °® °.°
2. lterate (local search): ° 2 o ¢
Assignment: Assign each point to the
nearest centroid. ° °
Mean Computation: Update each centroid ¢ ° o
to be the average of points assigned to it. " ° PO)
Bottleneck is Assignment ste L *,% ° d o of ¢
g P. K o... . o ‘,d‘
ode el ® ¢
PY ° °
o %% e ° « ..‘. °
o o (L)
% . °, °

10/18

Lloyd’s k-Means Method

Iter 4b: Compute Means

1. Initialization: Sample k centroids uniformly
from the dataset.

o9
Y [J
L) °
X
) []

2. lterate (local search): ® oo Be® o o
Assignment: Assign each point to the e® ...
nearest centroid. LA
Mean Computation: Update each centroid ‘ 'Y i
to be the average of points assigned to it. °

. . o o
Bottleneck is Assignment step. o o
L4 °
$,% ¢ ° .
Key observation: Assignment step is a (] . ° '. oo '.0. g A
nearest-neighbour problem. ° *" o ° °
I, O o ® °
° .“ o o ® O.Q'
o o ®e °
% o °

10/18

Lloyd’s k-Means Method

Iter 4b: Compute Means

1. Initialization: Sample k& centroids uniformly

®e
from the dataset. ° °
® 9 °
2. lterate (local search): se o
Assignment: Assign each point to the ® o0 ... L
nearest centroid. °® '..
Mean Computation: Update each centroid °° o, i
to be the average of points assigned to it. ‘ ° °
Bottleneck is Assignment step. ® . o
. . . ° ® o
Key observation: Assignment step is a o % e ° ° .
-nei ° ° o of
nearest-neighbour problem. .' '.: A
‘ ‘ °
Lloyd’s algorithm is very limited in theory. ofe 3 :‘ ° °® e
But it’s very good in practice. ° ‘! R r °
% o °, °

10/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest
neighbor search (ANNS) data structure on the
centroids.

= Assignment: Use the data structure to assign
each data point to its nearest centroid
approximately.

= Mean Computation: Unchanged

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Why ANNS? Exact-NN has a linear lower bound in
high-dimensions!.

ANNS has strong lower bounds too?, but good
widely-used heuristics exist.

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Experiment:
= Baseline: Popular Lloyd implementations:
= CPU: scikit

= GPU: cuML, simple pytorch impl
= Suite of (CPU) ANNS data structures:

= PQ, SQ, IVF IVFPQ, HNSW
= FAISS implementations

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Experiment:
= Baseline: Popular Lloyd implementations:
= CPU: scikit

= GPU: cuML, simple pytorch impl
= Suite of (CPU) ANNS data structures:

= PQ, SQ, IVF IVFPQ, HNSW
= FAISS implementations

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Experiment:
= Baseline: Popular Lloyd implementations:
= CPU: scikit

= GPU: cuML, simple pytorch impl
= Suite of (CPU) ANNS data structures:

= PQ, SQ, IVF IVFPQ, HNSW
= FAISS implementations

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

* Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000
search (ANNS) data structure on the centroids. 701 1»
= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately. 65 1
» Make sure not to regress (compare assignments) w
—8— CuMLKMeans
= Mean Computation: Unchanged 5601 —6— FaissHNSWKMeans
.) fr —8— FaissIVFFlatKMeans
Experiment: . —e— FaissIVFPQKMeans
= Baseline: Popular Lloyd implementations: § —8— FaissIVFPQRKMeans
. el 9 —8— FaissPQKMeans
? g;'d z(;lll\(/lltl_ simple pytorch imol 5 50 —®— FaissScalarQuantizerKkMeans
. : » SImpie py P g —o— PyTorchKMeansGPU
= Suite of (CPU) ANNS data structures: —o— scikitkMeans
» PQ, SQ, IVF IVFPQ, HNSW
» FAISS implementations

0 200 400 600 800
Time(s)

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

4Raschka et al. Machine Learnine in Pvthon: Main developments and technologv trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000
search (ANNS) data structure on the centroids. s —e— CuMLKMeans |
= Assignment: Use the data structure to assign each I :::::'\'/’:i:’:&'\:f:an:s
data point to its nearest centroid approximately. 2.0 —e— FaissIVFPOKMeans |
» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans
. . —8— PyTorchKMeansGPU
= Mean Computation: Unchanged gas T —- SiikitKMeans |
Experiment: 3 \ \,\ ‘
. . . © 41.0
* Baseline: Po.p.ular Lloyd implementations: u?'{ \ L \\
» CPU: scikit 8405 |2 LN e=3-e
» GPU: cuML, simple pytorch impl 2 \ \
* Suite of (CPU) ANNS data structures: 100 \
» PQ, SQ, IVF IVFPQ, HNSW \ *
* FAISS implementations 305 l

T T
100 200 300 400 500
Time(s)

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000

search (ANNS) data structure on the centroids. s —e— CuMLKMeans |

= Assignment: Use the data structure to assign each I ::::mi:’:&'\:f:::s
data point to its nearest centroid approximately. 2.0 —e— [FaissIVFPQKMekns. |

» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans

. —8— PyTorchKMeansGPU
= Mean Computation: Unchanged 415 T —e— ScikitkMeans |

Conclusions: \ \ ‘
\

= Dimension reduction (quantization) generally bad

AN
o .\'\‘1."‘0-!3*

WD
39.5 W

T T
100 200 300 400 500
Time(s)

Mean-Squared Error
B £y
o = [
w o
__——0
)
Lo—

S

o
i~

¢

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000

search (ANNS) data structure on the centroids. s —e— CuMLKMeans |

= Assignment: Use the data structure to assign each I ::::mi:’:&'\:f:::s
data point to its nearest centroid approximately. 2.0 —e— [FaissIVFPQKMekns. |

» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans

. —8— PyTorchKMeansGPU
= Mean Computation: Unchanged 415 T —e— ScikitkMeans |

Conclusions: \ \ ‘
41.0 ™

= Dimension reduction (quantization) generally bad

\.N
.\
* HNSW3 is really good! \,& o s)

WD
39.5 W

T T
100 200 300 400 500
Time(s)

Mean-Squared Error
iy
©
w

S

o
i~

¢

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000

search (ANNS) data structure on the centroids. s —e— CuMLKMeans |

= Assignment: Use the data structure to assign each I ::::mi:’:&'\:f:::s
data point to its nearest centroid approximately. 2.0 —e— [FaissIVFPQKMekns. |

» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans

. —8— PyTorchKMeansGPU
= Mean Computation: Unchanged 415 T —e— ScikitkMeans |

Conclusions: \ \ ‘
41.0 ™

= Dimension reduction (quantization) generally bad

AN,
\ & h’\k‘!&*

= HNSW? is really good! K L
» Almost as good as Nvidia’s own GPU K\\ \

imlementation.*
.

T T
100 200 300 400 500
Time(s)

IS
o
5

Mean-Squared Error

S

o
i~

¢

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Checkpoint 2

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

Basically out-of-core ANNS with n base points

'

k-Means Clustering

4/\

Exact NNS In-Memory ANNS

k base points k base points

. .

GPU Acceleration HNSW

12/18

HNSW Review

)
® '.‘. .::. "‘.ii
° . @0 ®©
. o x” ..
) ®
(J
c. .o ‘.‘0
o
Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)

= Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result
layers (similar to skip list)
= Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)

Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result
layers (similar to skip list)
= Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result
layers (similar to skip list)
= Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

HNSW Review

Structure Search
= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)
Build/insertions also similar to skip list

13/18

Normal ANNS queries: given a query point, find a good close neighbor.

14/18

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.

14/18

Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

= robustness — good solutions even if seed points bad

= consistency — better solutions if seed points good

14/18

Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

= robustness — good solutions even if seed points bad

= consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).

14/18

Box HNSW

Main Improvements: Beating Black

Centroids “slow down” over time:

i

o°

@
+
©
o
=
=
[
<
X
G
o
o
=
X
©
192}
©
(92}
=
I

—
2
‘®
3
3]
o
a0
=
B
=
£
o
U
o
E
P
3]
=)
o
B
(%2}

[
—
fras}
x
L
s

= Rebuilds (

seed points” from prev assignment:

[%2]
=2
=2
<
o

o}
o

o}

o}
%]

15/18

Main Improvements: Beating Black-Box HNSW

Score over time in dpr5m_base with k=10000

39.54 1 —e— 1:rebuilds-only
39.53 A1
39.52 A1
s
A " . & 39511
Centroids “slow down” over time: >
o
* Rebuilds (HNSW as a kind of kinetic data S 39.50 -
structure, omitting details) a
. ” . = 4
= Extra “seed points” from prev assignment: © 39.49
Seeded ANNS =
39.48 A
39.47 A
39.46 A

250 300 350 400 450 500
Time(s)

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

= Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

= Extra “seed points” from prev assignment:

Seeded ANNS

Mean-Squared Error

Score over time in dpr5m_base with k=10000

39.50

39.45

39.40

39.35

—8— 1:rebuilds-only
—®— 2:0ne-seed

200

300 400 500
Time(s)

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

= Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

= Multiple extra “seed points” from prev
assignment: Seeded ANNS

39Score over time in dpr5m_base with k=10000
.55

0
W
Y

s
5 3945 [
@ —8— 1l:rebuilds-only
3 \ —o— 2:one-seed
"’c.r 39.40 —8— 3:many-seeds |
: \
©
[
=

39.35

39.30

100 200 300 400 500

Time(s)

15/18

Main Improvements: Beating Black-Box HNSW

39Score over time in dpr5m_base with k=10000
.55

39.50 XX
Centroids “slow down” over time: .
o
* Rebuilds (HNSW as a kind of kinetic data = 39.45 : ,
structure, omitting details) o ®-= L:rebullds-only
. . 5 —&— 2:one-seed
= Multiple extra “seed points” from prev E —e— 3:many-seeds
assignment: Seeded ANNS £ 39.40 —e— 4:min-iters |
. ©
Often also improve: L
= Min iteration threshold 39.35
= Bulk queries for more seed points
39.30
100 200 300 400 500

Time(s)

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

= Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

= Multiple extra “seed points” from prev
assignment: Seeded ANNS

Often also improve:
= Min iteration threshold

= Bulk queries for more seed points

Score over time in dp
39.55

39.50

w
©
>
[

w
©
»
o

Mean-Squared Error

39.35

39.30

r5m_base with k=10000

|

teede

1:rebuilds-only |
2:one-seed
3:many-seeds
4:min-iters N
5:bulk

100

200

300
Time(s)

400 500

15/18

Main Improvements: Beating Black-Box HNSW

Score over time in dpr5m_base with k=10000

—8— CuMLKMeans
FaissHNSWKMeans

41.5

-
—&— MopKMeans
.) —8— PyTorchKMeansGPU
Centroids “slow down" over time: —@— ScikitkMeans
= Rebuilds (HNSW as a kind of kinetic data

structure, omitting details)

= Multiple extra “seed points” from prev
assignment: Seeded ANNS

Often also improve:

= Min iteration threshold

Mean-Squared Error
I
o
wv

40.0
= Bulk queries for more seed points

Now (mostly) beating GPU implementations
with CPU. 305

100 200 300 400 500

Time(s)
15/18

More Results

Score over time in sift50M_base with k=100000

49000 -

H
o]
o
o
o
!

Mean-Squared Error
H
~
o
o
o
L

46000

45000

:

—8— MopKMeans

—o— PyTorchKMeansGPU

—8— ScikitKMeans

500

1000
Time(s)

1500

Mean-Squared Error

Score over time in sift1B with k=100000

20000 -

19000 1

18000 A

17000 -

16000 -

—&— MopKMeans

7500 10000 12500 15000 17500
Time(s)

16/18

Checkpoint 3

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

Basically out-of-core ANNS with n base points

v

k-Means Clustering

4/\

Exact NNS In-Memory ANNS

k base points k base points

In-Memory Seeded ANNS

k base points

' '

'GPU Acceleration |

‘Seeded HNSW |

17/18

Open

Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don't seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling—dimensionl.

H
arxiv.org/abs/2502.06163

Mean-Squared Error

Score over time in sift50M_base with k=100000

p —&— MopKMeans

—®— PyTorchKMeansGPU
49000 - —8— ScikitKMeans
48000 -

(]
47000 - p
46000 -
45000 A
0 500 1000 1500
Time(s)

Yindyk & Xu, Worst-case performance of popular approximate nearest neighbor search implementations [..]

18/18

https://doi.org/10.5555/3666122.3669013

Open

Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don't seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling—dimensionl.

H
arxiv.org/abs/2502.06163

Fin.

Mean-Squared Error

Score over time in sift50M_base with k=100000

p —&— MopKMeans

—®— PyTorchKMeansGPU
49000 - —8— ScikitKMeans
48000 -

®
47000 - p
46000 -
45000 A
0 500 1000 1500
Time(s)

Yindyk & Xu, Worst-case performance of popular approximate nearest neighbor search implementations [-.]

18/18

https://doi.org/10.5555/3666122.3669013

	Introduction
	k-Means Review

