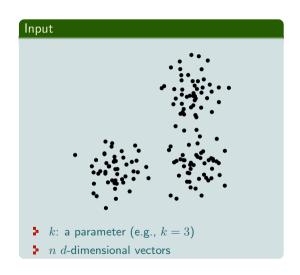
Jack Spalding-Jamieson (Jack S-J) jacksj@uwaterloo.ca

Independent

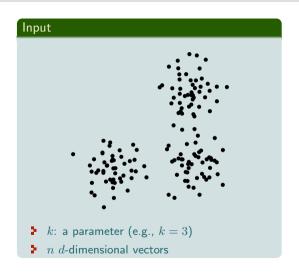
Scalable k-Means Clustering for Large k via Seeded Approximate Nearest-Neighbor Search

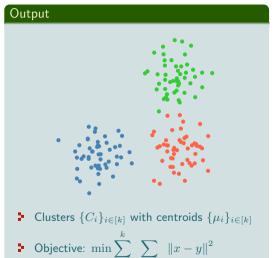
Joint work with Eliot Robson and Da Wei Zheng

k-Means/Sum of Squares Clustering: Quick Review



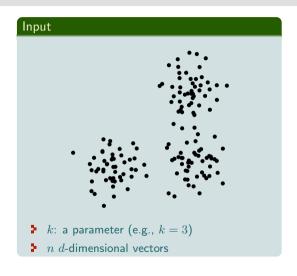
k-Means/Sum of Squares Clustering: Quick Review

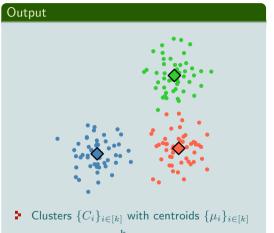




 $\overline{i=1} \ x, \overline{y \in C_i}$

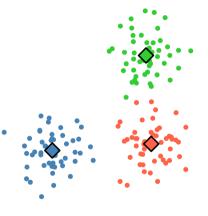
k-Means/Sum of Squares Clustering: Quick Review





Objective: $\min \sum_{i=1}^{K} \sum_{x \in C_i} ||x - \mu_i||^2$ (Equivalent by Huygens' theorem)

k-means is NP-hard, even for k=2.¹



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

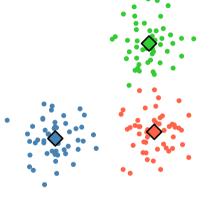
²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

³Bahmani et al., Scalable k-means++

⁴Lloyd, Least square quantization in PCM

⁵Bahmani's slides on k-means | |

k-means is NP-hard, even for k=2.



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

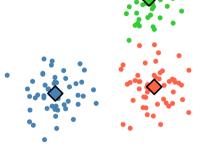
³Bahmani et al., Scalable k-means++

⁴Lloyd, Least square quantization in PCM

⁵Bahmani's slides on k-means | |

k-means is NP-hard, even for k=2.

- Local search: Lloyd's algorithm⁴
 - Fine Complexity per iteration: O(nkd)



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

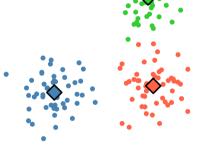
³Bahmani et al., *Scalable k-means++*

⁴Lloyd, Least square quantization in PCM

⁵Bahmani's slides on k-means | |

k-means is NP-hard, even for k=2.

- Local search: Lloyd's algorithm⁴
 - ightharpoonup Time Complexity per iteration: O(nkd)
- Approximation algorithms:



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

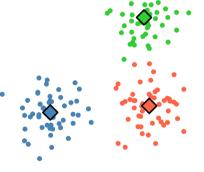
³Bahmani et al., *Scalable k-means++*

⁴Lloyd, Least square quantization in PCM

⁵Bahmani's slides on k-means | |

k-means is NP-hard, even for k=2.

- Local search: Lloyd's algorithm⁴
 - For Time Complexity per iteration: O(nkd)
- **Approximation algorithms:**
 - k-means++²
 - ightharpoonup O(nkd) time
 - ▶ $8(\ln k + 2)$ expected approximation



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

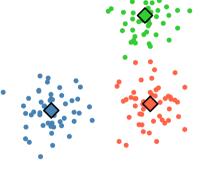
³Bahmani et al., *Scalable k-means++*

⁴Lloyd, Least square quantization in PCM

⁵Bahmani's slides on k-means I I

k-means is NP-hard, even for k=2.

- Local search: Lloyd's algorithm⁴
 - For Time Complexity per iteration: O(nkd)
- **Approximation algorithms:**
 - k-means++2
 - ightharpoonup O(nkd) time
 - ▶ $8(\ln k + 2)$ expected approximation
 - k-means $||^{3,5}$
 - $ightharpoonup O(c_1 \cdot nd + O(c_2 \cdot k^2d) \text{ time, } c_1, c_2 \text{ small in practice}$
 - $ightharpoonup O(\log k)$ expected approximation



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

³Bahmani et al., *Scalable k-means++*

⁴Lloyd, Least square quantization in PCM

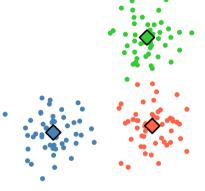
⁵Bahmani's slides on k-means I I

k-means is NP-hard, even for k=2.

Two broad approaches for good (practical) solutions:

- Local search: Lloyd's algorithm⁴
 - Fine Complexity per iteration: O(nkd)
- **Approximation algorithms:**
 - k-means++2
 - ightharpoonup O(nkd) time
 - ▶ $8(\ln k + 2)$ expected approximation
 - k-means $||^{3,5}$
 - $O(c_1 \cdot nd + O(c_2 \cdot k^2d)$ time, c_1, c_2 small in practice
 - $ightharpoonup O(\log k)$ expected approximation

Better approximations known, not used in practice.



¹Aloise et al., NP-hardness of Euclidean sum-of-squares clustering

²Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding

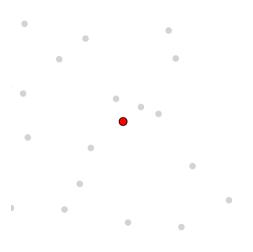
³Bahmani et al., *Scalable k-means++*

⁴Lloyd, Least square quantization in PCM

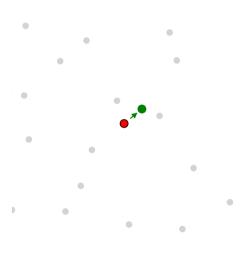
⁵Bahmani's slides on k-means I I

Nearest-Neighbor Search

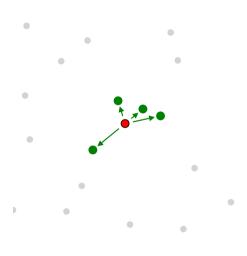
Nearest-Neighbor Search



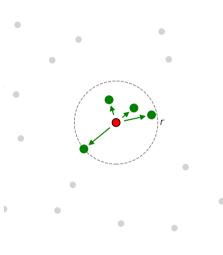
Nearest-Neighbor Search



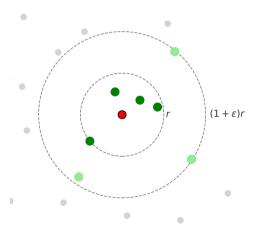
k-Nearest-Neighbor Search



k-Nearest-Neighbor Search

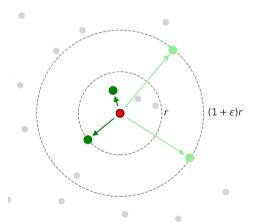


Approximate *k*-Nearest-Neighbor Search



Approximation factor: $(1+\varepsilon)$

Approximate *k*-Nearest-Neighbor Search



Approximation factor: $(1+\varepsilon)$ Recall: $\frac{2}{4}=0.5$

ANNS has three broad families of practical approaches:

- Quantization
- Space-partitioning/Clustering
- Search-graphs

Quantization is normally used alongside the other two.

ANNS has three broad families of practical approaches:

- Quantization
- Space-partitioning/Clustering
- Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,

ANNS has three broad families of practical approaches:

- Quantization
- Space-partitioning/Clustering
- Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best, but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

ANNS has three broad families of practical approaches:

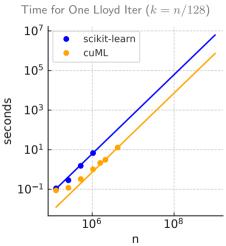
- Quantization
- Space-partitioning/Clustering
- Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best, but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20,000,000 points requires 16GB (plus data structure size).

"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

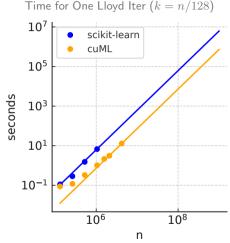
² Jégou et al., Product Quantization for Nearest Neighbor Search

³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.

Many methods used in industry for <u>massive</u> datasets^{1,2,3,4} solve k-means as a sub-routine, and would benefit from very large k.



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

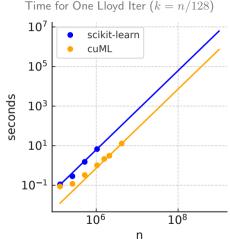
² Jégou et al., Product Quantization for Nearest Neighbor Search

³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.

- Many methods used in industry for <u>massive</u> datasets^{1,2,3,4} solve k-means as a sub-routine, and would benefit from very large k.
- Many would benefit from large k ($k \approx n/c$ for small c), but current methods are too slow.



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

² Jégou et al., Product Quantization for Nearest Neighbor Search

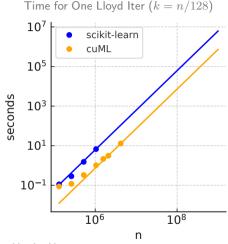
³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.

- Many methods used in industry for massive datasets 1,2,3,4 solve k-means as a sub-routine, and would benefit from very large k.
- Many would benefit from large k ($k \approx n/c$ for small c), but current methods are too slow.

All practical methods take $\Omega(k^2)$ time.



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

² Jégou et al., Product Quantization for Nearest Neighbor Search

³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

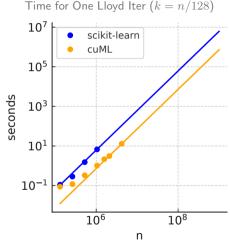
⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.

- Many methods used in industry for <u>massive</u> datasets^{1,2,3,4} solve k-means as a sub-routine, and would benefit from very large k.
- Many would benefit from large k ($k \approx n/c$ for small c), but current methods are too slow.

All practical methods take $\Omega(k^2)$ time.

Focus on large $n \in [10^6, 10^9]$, $k \approx n/c$, and $d \ge 100$.



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

²Jégou et al., Product Quantization for Nearest Neighbor Search

³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

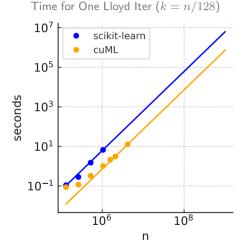
"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.

- Many methods used in industry for <u>massive</u> datasets^{1,2,3,4} solve k-means as a sub-routine, and would benefit from very large k.
- Many would benefit from large k ($k \approx n/c$ for small c), but current methods are too slow.

All practical methods take $\Omega(k^2)$ time.

Focus on large $n \in [10^6, 10^9]$, $k \approx n/c$, and $d \ge 100$.

Days to weeks with current methods! -



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

²Jégou et al., Product Quantization for Nearest Neighbor Search

³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

"Vector Similarity Search" is very popular in machine learning recently, with a lot of active development.

- Many methods used in industry for <u>massive</u> datasets^{1,2,3,4} solve k-means as a sub-routine, and would benefit from very large k.
- Many would benefit from large k ($k \approx n/c$ for small c), but current methods are too slow.

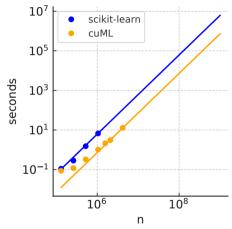
All practical methods take $\Omega(k^2)$ time.

Focus on large $n \in [10^6, 10^9]$, $k \approx n/c$, and $d \ge 100$.

ightharpoonup Days to weeks with current methods! ightharpoonup

Focus on real performance, not asymptotics.

Time for One Lloyd Iter (k = n/128)



¹Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos

²Jégou et al., Product Quantization for Nearest Neighbor Search

³Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search

⁴Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

- Init centroids with one of:
 - k-means++
 - k-means||
 - > uniform random sampling

- Init centroids with one of:
 - k-means++
 - k-means||
 - uniform random sampling
- Lloyd's algorithm for local search

- Init centroids with one of:
 - k-means++
 - k-means||
 - uniform random sampling
- Lloyd's algorithm for local search
- Iterate until timeout

- Init centroids with one of:
 - k-means++
 - k-means||
 - uniform random sampling
- Lloyd's algorithm for local search
- Iterate until timeout
- Accelerate each step on GPU

Typical approach:

- Init centroids with one of:
 - k-means++
 - k-means||
 - uniform random sampling
- Lloyd's algorithm for local search
- Iterate until timeout
- Accelerate each step on GPU

Small k: k-means++ and | | are very good

Typical approach:

- Init centroids with one of:
 - k-means++
 - k-means||
 - uniform random sampling
- Lloyd's algorithm for local search
- Iterate until timeout
- Accelerate each step on GPU

Small k: k-means++ and | | are very good

We have large n and k, e.g. n=5e6 and k=1e4.

Bottleneck Testing

Typical approach:

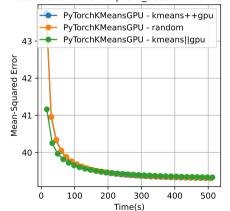
- Init centroids with one of:
 - k-means++
 - k-means | |
 - uniform random sampling
- Lloyd's algorithm for local search
- lterate until timeout
- Accelerate each step on GPU

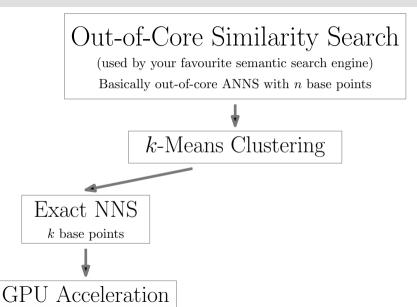
Small k: k-means++ and | | are very good

We have large n and k, e.g. n = 5e6 and k = 1e4. Large n/k: Only Lloyd's algorithm matters (right)

Conclusion: Want to accelerate Lloyd's algorithm

Score over time in dpr5m base with k=10000





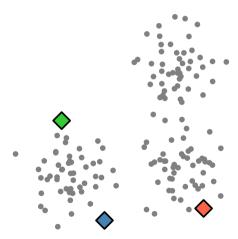
- Initialization: Sample k centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is **Assignment** step.

- 1. Initialization: Sample *k* centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

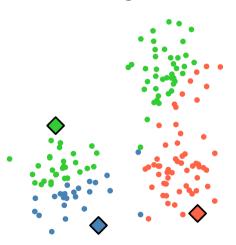
Initialize Centroids



- Initialization: Sample k centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

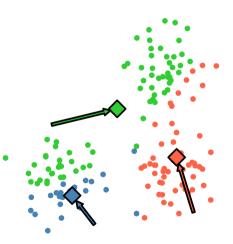
Iter 1a: Assign Labels



- Initialization: Sample k centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

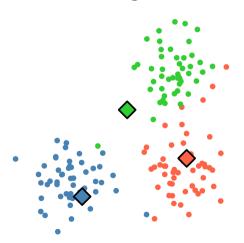
Iter 1b: Compute Means



- Initialization: Sample k centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

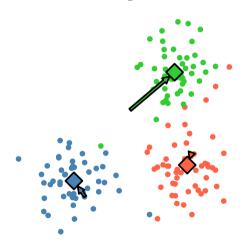
Iter 2a: Assign Labels



- 1. **Initialization:** Sample *k* centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

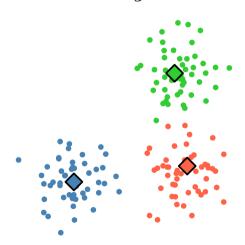
Iter 2b: Compute Means



- Initialization: Sample k centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

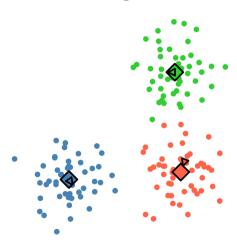
Iter 3a: Assign Labels



- 1. **Initialization:** Sample *k* centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is **Assignment** step.

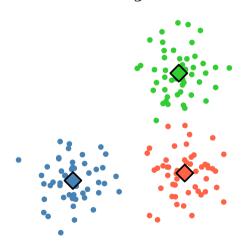
Iter 3b: Compute Means



- Initialization: Sample k centroids uniformly from the dataset.
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 4a: Assign Labels

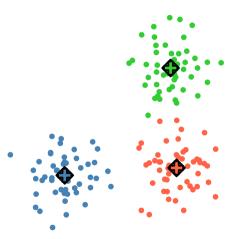


- 1. Initialization: Sample k centroids uniformly from the dataset
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is Assignment step.

Key observation: Assignment step is a nearest-neighbour problem.

Iter 4b: Compute Means



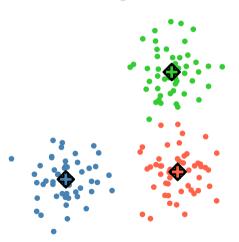
- 1. Initialization: Sample k centroids uniformly from the dataset
- 2. Iterate (local search):
 - Assignment: Assign each point to the nearest centroid.
 - Mean Computation: Update each centroid to be the average of points assigned to it.

Bottleneck is **Assignment** step.

Key observation: Assignment step is a nearest-neighbour problem.

Lloyd's algorithm is very limited in theory. But it's very good in practice.

Iter 4b: Compute Means



Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
- Mean Computation: Unchanged

⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - **▶** Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

Why ANNS? Exact-NN has a linear lower bound in high-dimensions¹.

ANNS has strong lower bounds too², but good widely-used heuristics exist.

¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs ⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - ► Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

- Baseline: Popular Lloyd implementations:
 - CPU: scikit
 - GPU: cuML, simple pytorch impl
- Suite of (CPU) ANNS data structures:
 - ▶ PQ, SQ, IVF IVFPQ, HNSW
 - FAISS implementations

¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

- Baseline: Popular Lloyd implementations:
 - CPU: scikit
 - GPU: cuML, simple pytorch impl
- Suite of (CPU) ANNS data structures:
 - PQ. SQ. IVF IVFPQ. HNSW
 - FAISS implementations

¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - ► Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

- ▶ Baseline: Popular Lloyd implementations:
 - CPU: scikit
 - GPU: cuML, simple pytorch impl
- Suite of (CPU) ANNS data structures:
 - PQ. SQ. IVF IVFPQ. HNSW
 - FAISS implementations

¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

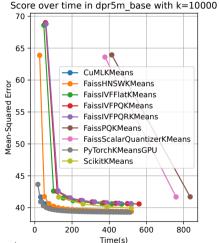
⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

Experiment:

- **B**aseline: Popular Lloyd implementations:
 - CPU: scikit
 - ▶ GPU: cuML, simple pytorch impl
- Suite of (CPU) ANNS data structures:
 - PQ, SQ, IVF IVFPQ, HNSW
 - FAISS implementations



¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

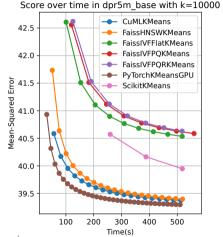
²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - ► Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

- **B**aseline: Popular Lloyd implementations:
 - CPU: scikit
 - GPU: cuML, simple pytorch impl
- Suite of (CPU) ANNS data structures:
 - PQ, SQ, IVF IVFPQ, HNSW
 - FAISS implementations



¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

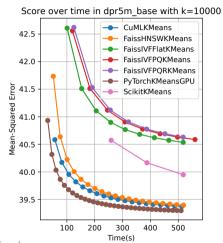
⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

Conclusions:

Dimension reduction (quantization) generally bad



¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

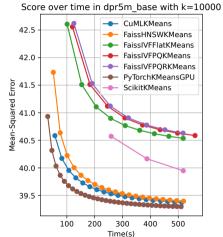
⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - ► Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

Conclusions:

- ▶ Dimension reduction (quantization) generally bad
- ► HNSW³ is really good!



¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

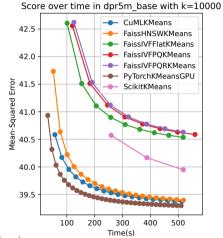
⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

Alternative iteration approach:

- Build: Construct an approximate nearest neighbor search (ANNS) data structure on the centroids.
- Assignment: Use the data structure to assign each data point to its nearest centroid approximately.
 - ► Make sure not to regress (compare assignments)
- Mean Computation: Unchanged

Conclusions:

- Dimension reduction (quantization) generally bad
- ▶ HNSW³ is *really* good!
 - Almost as good as Nvidia's own GPU imlementation.⁴

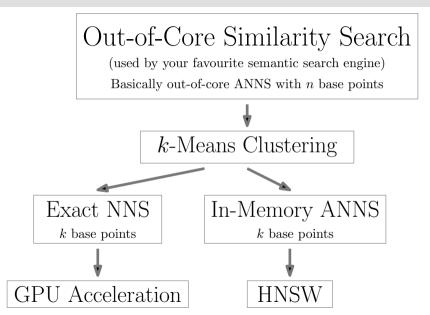


¹Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

²Liu, A strong lower bound for approximate nearest neighbor searching

³Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

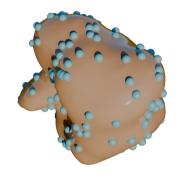
⁴Raschka et al., Machine Learning in Python: Main developments and technology trends [...]



Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

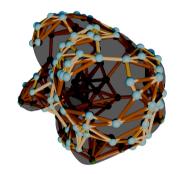
- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result



Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

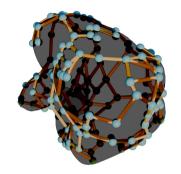
- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result



Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

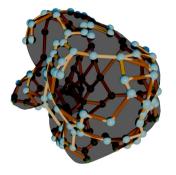
- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result

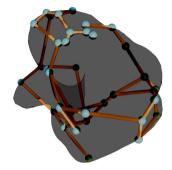


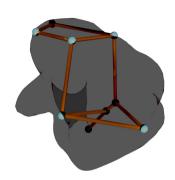
Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result



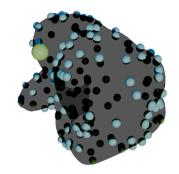




Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

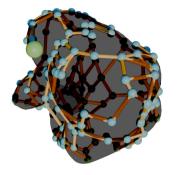
- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result

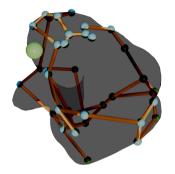


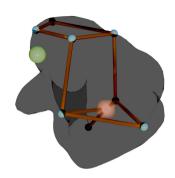
Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result



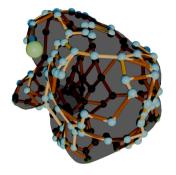


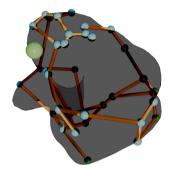


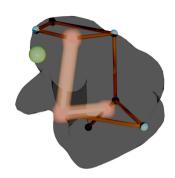
Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- **▶** Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result



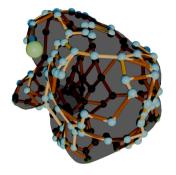


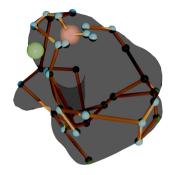


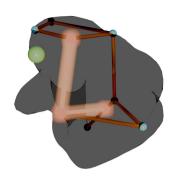
Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- Start at arbitrary point on top level
- Greedy local search
- * "Seed" lower layers with result



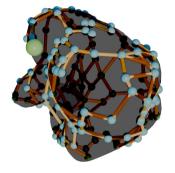


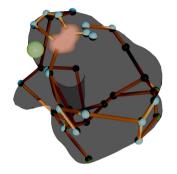


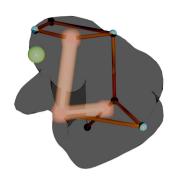
Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result



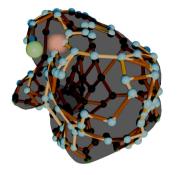


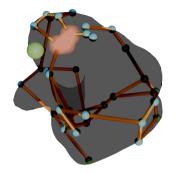


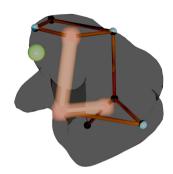
Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- ▶ Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- Start at arbitrary point on top level
- Greedy local search
- * "Seed" lower layers with result





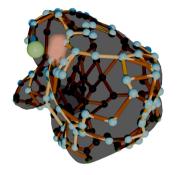


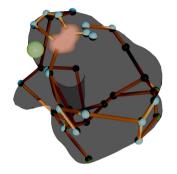
Structure

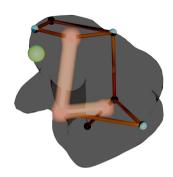
- Start with (approximate) NN graph
- Prune edges with a heuristic
- ▶ Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

- Start at arbitrary point on top level
- Greedy local search
- "Seed" lower layers with result

HNSW Review







Structure

- Start with (approximate) NN graph
- Prune edges with a heuristic
- Randomly subsample points to get higher layers (similar to skip list)
- Build/insertions also similar to skip list

Search

- Start at arbitrary point on top level
- Greedy local search
- * "Seed" lower layers with result

Normal ANNS queries: given a query point, find a good close neighbor.

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given **seed points** (candidate close neighbors). Very simple <u>learning-augmented</u> form of ANNS.

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given **seed points** (candidate close neighbors). Very simple <u>learning-augmented</u> form of ANNS. Want:

- robustness good solutions even if seed points bad
- consistency better solutions if seed points good

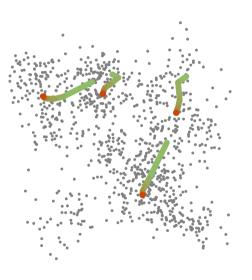
Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given **seed points** (candidate close neighbors). Very simple <u>learning-augmented</u> form of ANNS. Want:

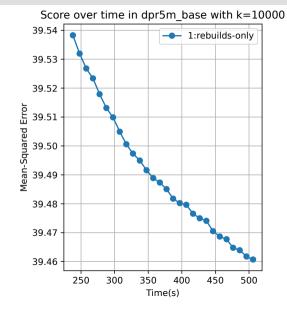
- robustness good solutions even if seed points bad
- consistency better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph methods (result: seeded search-graphs).

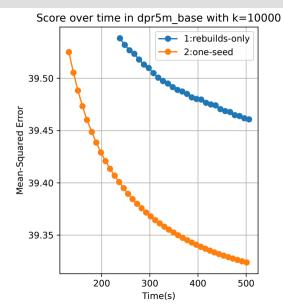
- Rebuilds (HNSW as a kind of kinetic data structure, omitting details)
- Extra "seed points" from prev assignment: Seeded ANNS



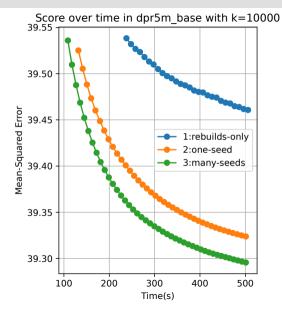
- **Rebuilds** (HNSW as a kind of kinetic data structure, omitting details)
- Extra "seed points" from prev assignment: Seeded ANNS



- Rebuilds (HNSW as a kind of kinetic data structure, omitting details)
- Extra "seed points" from prev assignment: Seeded ANNS



- Rebuilds (HNSW as a kind of kinetic data structure, omitting details)
- Multiple extra "seed points" from prev assignment: Seeded ANNS

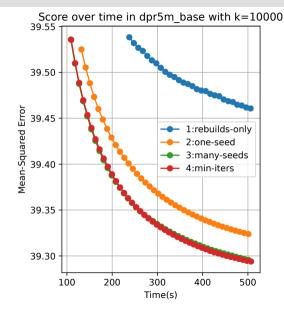


Centroids "slow down" over time:

- Rebuilds (HNSW as a kind of kinetic data structure, omitting details)
- Multiple extra "seed points" from prev assignment: Seeded ANNS

Often also improve:

- Min iteration threshold
- ▶ Bulk queries for more seed points

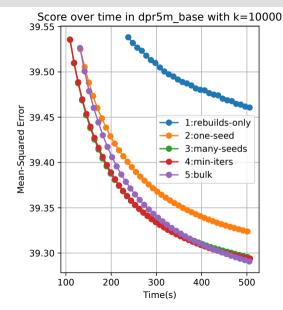


Centroids "slow down" over time:

- Rebuilds (HNSW as a kind of kinetic data structure, omitting details)
- Multiple extra "seed points" from prev assignment: Seeded ANNS

Often also improve:

- Min iteration threshold.
- Bulk queries for more seed points



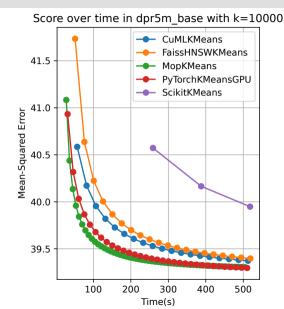
Centroids "slow down" over time:

- Rebuilds (HNSW as a kind of kinetic data structure, omitting details)
- Multiple extra "seed points" from prev assignment: Seeded ANNS

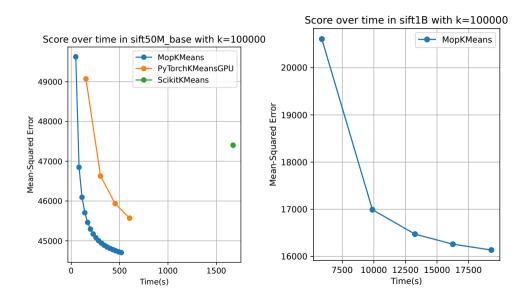
Often also improve:

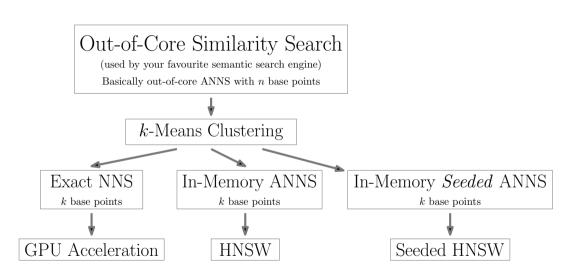
- Min iteration threshold
- Bulk queries for more seed points

Now (mostly) beating GPU implementations with CPU.



More Results

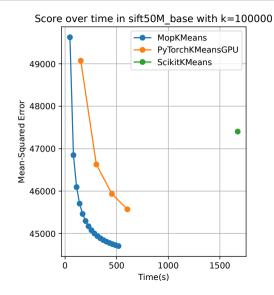




Open Problems

- GPU-acceleration of SANNS? No current methods for ANNS on GPU extend well.
- Perfect consistency guarantees for SANNS in fixed doubling dimension? Search-graph methods don't seem to work.
- General open ANNS problem: Better theoretical understanding of why search-graphs work well? Best known is (tunable) additive approximation known for one specific graph algorithm, with fixed doubling-dimension¹.

arxiv.org/abs/2502.06163



¹Indyk & Xu, Worst-case performance of popular approximate nearest neighbor search implementations [...]

Open Problems

- GPU-acceleration of SANNS? No current methods for ANNS on GPU extend well.
- Perfect consistency guarantees for SANNS in fixed doubling dimension? Search-graph methods don't seem to work.
- General open ANNS problem: Better theoretical understanding of why search-graphs work well? Best known is (tunable) additive approximation known for one specific graph algorithm, with fixed doubling-dimension¹.

arxiv.org/abs/2502.06163

Fin.

Score over time in sift50M base with k=100000

