
Independent

Jack Spalding-Jamieson (Jack S-J)
jacksj@uwaterloo.ca

Scalable k-Means Clustering for Large k via Seeded Approximate
Nearest-Neighbor Search

Joint work with Eliot Robson and Da Wei Zheng

1/18

k-Means/Sum of Squares Clustering: Quick Review

Input

k: a parameter (e.g., k = 3)

n d-dimensional vectors

1/18

k-Means/Sum of Squares Clustering: Quick Review

Input

k: a parameter (e.g., k = 3)

n d-dimensional vectors

Output

Clusters {Ci}i∈[k] with centroids {µi}i∈[k]

Objective: min

k∑
i=1

∑
x,y∈Ci

∥x− y∥2

1/18

k-Means/Sum of Squares Clustering: Quick Review

Input

k: a parameter (e.g., k = 3)

n d-dimensional vectors

Output

Clusters {Ci}i∈[k] with centroids {µi}i∈[k]

Objective: min
k∑

i=1

∑
x∈Ci

∥x− µi∥2

(Equivalent by Huygens’ theorem)

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

Local search: Lloyd’s algorithm4

Time Complexity per iteration: O(nkd)

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

Local search: Lloyd’s algorithm4

Time Complexity per iteration: O(nkd)

Approximation algorithms:

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

Local search: Lloyd’s algorithm4

Time Complexity per iteration: O(nkd)

Approximation algorithms:

k-means++2

▶ O(nkd) time
▶ 8(ln k + 2) expected approximation

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

Local search: Lloyd’s algorithm4

Time Complexity per iteration: O(nkd)

Approximation algorithms:
k-means++2

▶ O(nkd) time
▶ 8(ln k + 2) expected approximation

k-means||3,5

▶ O(c1 · nd + O(c2 · k2d) time, c1, c2 small in practice
▶ O(log k) expected approximation

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

2/18

k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1

Two broad approaches for good (practical) solutions:

Local search: Lloyd’s algorithm4

Time Complexity per iteration: O(nkd)

Approximation algorithms:
k-means++2

▶ O(nkd) time
▶ 8(ln k + 2) expected approximation

k-means||3,5

▶ O(c1 · nd + O(c2 · k2d) time, c1, c2 small in practice
▶ O(log k) expected approximation

Better approximations known, not used in practice.

1Aloise et al., NP-hardness of Euclidean sum-of-squares clustering
2Arthur & Vassilvitskii, k-means++: The Advantages of Careful Seeding
3Bahmani et al., Scalable k-means++
4Lloyd, Least square quantization in PCM
5Bahmani’s slides on k-means||

https://doi.org/10.1007/s10994-009-5103-0
http://ilpubs.stanford.edu:8090/778/
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1109/TIT.1982.1056489
http://web.archive.org/web/20151106080920/http://web.stanford.edu/group/mmds/slides2012/s-bahmani.pdf

3/18

Nearest-Neighbor Search

3/18

Nearest-Neighbor Search

3/18

Nearest-Neighbor Search

4/18

k-Nearest-Neighbor Search

4/18

k-Nearest-Neighbor Search

r

5/18

Approximate k-Nearest-Neighbor Search

r (1 +)r

Approximation factor: (1 + ε)

5/18

Approximate k-Nearest-Neighbor Search

r (1 +)r

Approximation factor: (1 + ε)
Recall: 2

4
= 0.5

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:

Quantization

Space-partitioning/Clustering

Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20, 000, 000 points requires 16GB (plus data structure size).

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:

Quantization

Space-partitioning/Clustering

Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,

but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20, 000, 000 points requires 16GB (plus data structure size).

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:

Quantization

Space-partitioning/Clustering

Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20, 000, 000 points requires 16GB (plus data structure size).

6/18

Dataset sizes vs Existing Approaches

ANNS has three broad families of practical approaches:

Quantization

Space-partitioning/Clustering

Search-graphs

Quantization is normally used alongside the other two.

Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20, 000, 000 points requires 16GB (plus data structure size).

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Many methods used in industry for massive
datasets1,2,3,4 solve k-means as a sub-routine,
and would benefit from very large k.

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Many methods used in industry for massive
datasets1,2,3,4 solve k-means as a sub-routine, and
would benefit from very large k.

Many would benefit from large k (k ≈ n/c for
small c), but current methods are too slow.

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Many methods used in industry for massive
datasets1,2,3,4 solve k-means as a sub-routine, and
would benefit from very large k.

Many would benefit from large k (k ≈ n/c for small
c), but current methods are too slow.

All practical methods take Ω(k2) time.

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Many methods used in industry for massive
datasets1,2,3,4 solve k-means as a sub-routine, and
would benefit from very large k.

Many would benefit from large k (k ≈ n/c for small
c), but current methods are too slow.

All practical methods take Ω(k2) time.

Focus on large n ∈ [106, 109], k ≈ n/c, and d ≥ 100.

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Many methods used in industry for massive
datasets1,2,3,4 solve k-means as a sub-routine, and
would benefit from very large k.

Many would benefit from large k (k ≈ n/c for small
c), but current methods are too slow.

All practical methods take Ω(k2) time.

Focus on large n ∈ [106, 109], k ≈ n/c, and d ≥ 100.

Days to weeks with current methods! →

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

7/18

Some Motivation

“Vector Similarity Search” is very popular in machine
learning recently, with a lot of active development.

Many methods used in industry for massive
datasets1,2,3,4 solve k-means as a sub-routine, and
would benefit from very large k.

Many would benefit from large k (k ≈ n/c for small
c), but current methods are too slow.

All practical methods take Ω(k2) time.

Focus on large n ∈ [106, 109], k ≈ n/c, and d ≥ 100.

Days to weeks with current methods! →
Focus on real performance, not asymptotics.

Time for One Lloyd Iter (k = n/128)

106 108

n

10 1

101

103

105

107

se
co
n
d
s

scikit-learn

cuML

1Sivic & Zisserman, Video Google: A text retrieval approach to object matching in videos
2Jégou et al., Product Quantization for Nearest Neighbor Search
3Chen et al., SPANN: Highly-Efficient Billion-scale Approximate Nearest Neighbor Search
4Sun et al., SOAR: Improved Indexing for Approximate Nearest Neighbor Search

https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.5555/3540261.3540659
https://doi.org/10.5555/3666122.3666263

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.

Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

8/18

Bottleneck Testing

Typical approach:

Init centroids with one of:
k-means++
k-means||
uniform random sampling

Lloyd’s algorithm for local search

Iterate until timeout

Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = 1e4.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm 0 100 200 300 400 500

Time(s)

40

41

42

43

M
ea

n-
Sq

ua
re

d
Er

ro
r

Score over time in dpr5m_base with k=10000
PyTorchKMeansGPU - kmeans++gpu
PyTorchKMeansGPU - random
PyTorchKMeansGPU - kmeans||gpu

9/18

Checkpoint 1

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

k-Means Clustering

Exact NNS

GPU Acceleration

Basically out-of-core ANNS with n base points

k base points

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Initialize Centroids

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 1a: Assign Labels

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 1b: Compute Means

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 2a: Assign Labels

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 2b: Compute Means

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 3a: Assign Labels

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 3b: Compute Means

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Iter 4a: Assign Labels

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Key observation: Assignment step is a
nearest-neighbour problem.

Iter 4b: Compute Means

10/18

Lloyd’s k-Means Method

1. Initialization: Sample k centroids uniformly
from the dataset.

2. Iterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.

Bottleneck is Assignment step.

Key observation: Assignment step is a
nearest-neighbour problem.

Lloyd’s algorithm is very limited in theory.
But it’s very good in practice.

Iter 4b: Compute Means

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest
neighbor search (ANNS) data structure on the
centroids.

Assignment: Use the data structure to assign
each data point to its nearest centroid
approximately.

Mean Computation: Unchanged

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Why ANNS? Exact-NN has a linear lower bound in
high-dimensions1.
ANNS has strong lower bounds too2, but good
widely-used heuristics exist.

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Experiment:

Baseline: Popular Lloyd implementations:
CPU: scikit
GPU: cuML, simple pytorch impl

Suite of (CPU) ANNS data structures:
PQ, SQ, IVF IVFPQ, HNSW
FAISS implementations

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Experiment:

Baseline: Popular Lloyd implementations:
CPU: scikit
GPU: cuML, simple pytorch impl

Suite of (CPU) ANNS data structures:
PQ, SQ, IVF IVFPQ, HNSW
FAISS implementations

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Experiment:

Baseline: Popular Lloyd implementations:
CPU: scikit
GPU: cuML, simple pytorch impl

Suite of (CPU) ANNS data structures:
PQ, SQ, IVF IVFPQ, HNSW
FAISS implementations

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Experiment:

Baseline: Popular Lloyd implementations:
CPU: scikit
GPU: cuML, simple pytorch impl

Suite of (CPU) ANNS data structures:
PQ, SQ, IVF IVFPQ, HNSW
FAISS implementations

0 200 400 600 800
Time(s)

40

45

50

55

60

65

70

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

FaissIVFFlatKMeans

FaissIVFPQKMeans

FaissIVFPQRKMeans

FaissPQKMeans

FaissScalarQuantizerKMeans

PyTorchKMeansGPU

ScikitKMeans

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Experiment:

Baseline: Popular Lloyd implementations:
CPU: scikit
GPU: cuML, simple pytorch impl

Suite of (CPU) ANNS data structures:
PQ, SQ, IVF IVFPQ, HNSW
FAISS implementations

100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

42.0

42.5

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

FaissIVFFlatKMeans

FaissIVFPQKMeans

FaissIVFPQRKMeans

PyTorchKMeansGPU

ScikitKMeans

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Conclusions:

Dimension reduction (quantization) generally bad

100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

42.0

42.5

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

FaissIVFFlatKMeans

FaissIVFPQKMeans

FaissIVFPQRKMeans

PyTorchKMeansGPU

ScikitKMeans

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Conclusions:

Dimension reduction (quantization) generally bad

HNSW3 is really good!

100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

42.0

42.5

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

FaissIVFFlatKMeans

FaissIVFPQKMeans

FaissIVFPQRKMeans

PyTorchKMeansGPU

ScikitKMeans

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

11/18

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

Make sure not to regress (compare assignments)

Mean Computation: Unchanged

Conclusions:

Dimension reduction (quantization) generally bad

HNSW3 is really good!
Almost as good as Nvidia’s own GPU
imlementation.4

100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

42.0

42.5

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

FaissIVFFlatKMeans

FaissIVFPQKMeans

FaissIVFPQRKMeans

PyTorchKMeansGPU

ScikitKMeans

1Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs
4Raschka et al., Machine Learning in Python: Main developments and technology trends [...]

https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

12/18

Checkpoint 2

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

k-Means Clustering

In-Memory ANNSExact NNS

HNSWGPU Acceleration

Basically out-of-core ANNS with n base points

k base points k base points

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

13/18

HNSW Review

Structure

Start with (approximate) NN graph

Prune edges with a heuristic

Randomly subsample points to get higher
layers (similar to skip list)

Build/insertions also similar to skip list

Search

Start at arbitrary point on top level

Greedy local search

“Seed” lower layers with result

14/18

Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

robustness — good solutions even if seed points bad

consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).

14/18

Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.

Want:

robustness — good solutions even if seed points bad

consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).

14/18

Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

robustness — good solutions even if seed points bad

consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).

14/18

Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

robustness — good solutions even if seed points bad

consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Extra “seed points” from prev assignment:
Seeded ANNS

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Extra “seed points” from prev assignment:
Seeded ANNS

250 300 350 400 450 500
Time(s)

39.46

39.47

39.48

39.49

39.50

39.51

39.52

39.53

39.54

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

1:rebuilds-only

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Extra “seed points” from prev assignment:
Seeded ANNS

200 300 400 500
Time(s)

39.35

39.40

39.45

39.50

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

1:rebuilds-only

2:one-seed

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Multiple extra “seed points” from prev
assignment: Seeded ANNS

100 200 300 400 500
Time(s)

39.30

39.35

39.40

39.45

39.50

39.55

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

1:rebuilds-only

2:one-seed

3:many-seeds

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Multiple extra “seed points” from prev
assignment: Seeded ANNS

Often also improve:

Min iteration threshold

Bulk queries for more seed points

100 200 300 400 500
Time(s)

39.30

39.35

39.40

39.45

39.50

39.55

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

1:rebuilds-only

2:one-seed

3:many-seeds

4:min-iters

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Multiple extra “seed points” from prev
assignment: Seeded ANNS

Often also improve:

Min iteration threshold

Bulk queries for more seed points

100 200 300 400 500
Time(s)

39.30

39.35

39.40

39.45

39.50

39.55

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

1:rebuilds-only

2:one-seed

3:many-seeds

4:min-iters

5:bulk

15/18

Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)

Multiple extra “seed points” from prev
assignment: Seeded ANNS

Often also improve:

Min iteration threshold

Bulk queries for more seed points

Now (mostly) beating GPU implementations
with CPU.

100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

MopKMeans

PyTorchKMeansGPU

ScikitKMeans

16/18

More Results

0 500 1000 1500
Time(s)

45000

46000

47000

48000

49000

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in sift50M_base with k=100000

MopKMeans

PyTorchKMeansGPU

ScikitKMeans

7500 10000 12500 15000 17500
Time(s)

16000

17000

18000

19000

20000

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in sift1B with k=100000

MopKMeans

17/18

Checkpoint 3

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

k-Means Clustering

In-Memory ANNS In-Memory Seeded ANNSExact NNS

HNSWGPU Acceleration

Basically out-of-core ANNS with n base points

k base points k base points k base points

Seeded HNSW

18/18

Open Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don’t seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling-dimension1.

arxiv.org/abs/2502.06163

0 500 1000 1500
Time(s)

45000

46000

47000

48000

49000

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in sift50M_base with k=100000

MopKMeans

PyTorchKMeansGPU

ScikitKMeans

1Indyk & Xu, Worst-case performance of popular approximate nearest neighbor search implementations [...]

https://doi.org/10.5555/3666122.3669013

18/18

Open Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don’t seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling-dimension1.

arxiv.org/abs/2502.06163

0 500 1000 1500
Time(s)

45000

46000

47000

48000

49000

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in sift50M_base with k=100000

MopKMeans

PyTorchKMeansGPU

ScikitKMeans

Fin.
1Indyk & Xu, Worst-case performance of popular approximate nearest neighbor search implementations [...]

https://doi.org/10.5555/3666122.3669013

	Introduction
	k-Means Review

