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Scalable k-Means Clustering for Large k via Seeded Approximate
Nearest-Neighbor Search

Joint work with Eliot Robson and Da Wei Zheng
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k-Means/Sum of Squares Clustering: Complexity and Approaches

k-means is NP-hard, even for k = 2.1
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3Bahmani et al., Scalable k-means--
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Approximation factor: (1+¢)
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ANNS has three broad families of practical approaches:
= Quantization
& Space-partitioning/Clustering
= Search-graphs

Quantization is normally used alongside the other two.
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ANNS has three broad families of practical approaches:
= Quantization
& Space-partitioning/Clustering
= Search-graphs

Quantization is normally used alongside the other two.
Important fact: Search-graph approaches are (almost universally) best,
but only work if your data or quantized data fits in RAM (prohibitively slow otherwise).

e.g. 200-dimensional f32 dataset with 20,000, 000 points requires 16GB (plus data structure size).
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» k-means]| |
= uniform random sampling

= Lloyd's algorithm for local search
= lterate until timeout

= Accelerate each step on GPU

Small k: k-means++ and || are very good

We have large n and k, e.g. n = 5e6 and k = led.
Large n/k: Only Lloyd’s algorithm matters (right)
Conclusion: Want to accelerate Lloyd’s algorithm

Score over t|me in dpr5m base W|th k=10000
T T
- PyTorchKMeansGPU kmeans++gpu
—®— PyTorchKMeansGPU - random

43 - —®— PyTorchKMeansGPU - kmeans||gpu |
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Checkpoint 1

Out-of-Core Similarity Search

(used by your favourite semantic search engine)

Basically out-of-core ANNS with n base points

'

k-Means Clustering

/

Exact NNS

k base points

.

GPU Acceleration
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1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it
Bottleneck is Assignment step

@ .: .{.:... ®
o.:‘} ® e
Y )
X DY B LS
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. .‘°‘ o o '....’9 *.
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Lloyd’s k-Means Method

1. Initialization: Sample k& centroids uniformly
from the dataset.

2. lterate (local search):

Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it.
Bottleneck is Assignment step.

Initialize Centroids
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Lloyd’s k-Means Method

Iter 3a: Assign Labels

1. Initialization: Sample k centroids uniformly
from the dataset.

2. lterate (local search):
Assignment: Assign each point to the
nearest centroid.
Mean Computation: Update each centroid
to be the average of points assigned to it. °
Bottleneck is Assignment step.

° ° [ ] [
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Lloyd’s k-Means Method

Iter 3b: Compute Means
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Lloyd’s k-Means Method

Iter 4a: Assign Labels
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Lloyd’s k-Means Method

Iter 4b: Compute Means

1. Initialization: Sample k centroids uniformly
from the dataset.
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Y [ J
L ) °
X
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Assignment: Assign each point to the e® ...
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Lloyd’s k-Means Method

Iter 4b: Compute Means

1. Initialization: Sample k& centroids uniformly

®e
from the dataset. ° °
® 9 °
2. lterate (local search): se o
Assignment: Assign each point to the ® o0 ... L
nearest centroid. °® '..
Mean Computation: Update each centroid °° o, i
to be the average of points assigned to it. ‘ ° °
Bottleneck is Assignment step. ® . o
. . . ° ® o
Key observation: Assignment step is a o % e ° ° .
-nei ° ° o of
nearest-neighbour problem. .' .... . '.: A
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Lloyd’s algorithm is very limited in theory. ofe 3 :‘ ° °® e
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Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest
neighbor search (ANNS) data structure on the
centroids.

= Assignment: Use the data structure to assign
each data point to its nearest centroid
approximately.

= Mean Computation: Unchanged

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18
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https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Why ANNS? Exact-NN has a linear lower bound in
high-dimensions!.

ANNS has strong lower bounds too?, but good
widely-used heuristics exist.

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Experiment:
= Baseline: Popular Lloyd implementations:
= CPU: scikit

= GPU: cuML, simple pytorch impl
= Suite of (CPU) ANNS data structures:

= PQ, SQ, IVF IVFPQ, HNSW
= FAISS implementations

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Experiment:
= Baseline: Popular Lloyd implementations:
= CPU: scikit

= GPU: cuML, simple pytorch impl
= Suite of (CPU) ANNS data structures:

= PQ, SQ, IVF IVFPQ, HNSW
= FAISS implementations

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:
= Build: Construct an approximate nearest neighbor
search (ANNS) data structure on the centroids.

= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately.

» Make sure not to regress (compare assignments)

= Mean Computation: Unchanged

Experiment:
= Baseline: Popular Lloyd implementations:
= CPU: scikit

= GPU: cuML, simple pytorch impl
= Suite of (CPU) ANNS data structures:

= PQ, SQ, IVF IVFPQ, HNSW
= FAISS implementations

'Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

* Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000
search (ANNS) data structure on the centroids. 701 1»
= Assignment: Use the data structure to assign each
data point to its nearest centroid approximately. 65 1
» Make sure not to regress (compare assignments) w
—8— CuMLKMeans
= Mean Computation: Unchanged 5601 —6— FaissHNSWKMeans
. ) fr —8— FaissIVFFlatKMeans
Experiment: . —e— FaissIVFPQKMeans
= Baseline: Popular Lloyd implementations: § —8— FaissIVFPQRKMeans
. el 9 —8— FaissPQKMeans
? g;'d z(;lll\(/lltl_ simple pytorch imol 5 50 —®— FaissScalarQuantizerKkMeans
. : » SImpie py P g —o— PyTorchKMeansGPU
= Suite of (CPU) ANNS data structures: —o— scikitkMeans
» PQ, SQ, IVF IVFPQ, HNSW
» FAISS implementations

0 200 400 600 800
Time(s)

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search
2Liu, A strong lower bound for approximate nearest neighbor searching
3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

4Raschka et al. Machine Learnine in Pvthon: Main developments and technologv trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000
search (ANNS) data structure on the centroids. s —e— CuMLKMeans |
= Assignment: Use the data structure to assign each I :::::'\'/’:i:’:&'\:f:an:s
data point to its nearest centroid approximately. 2.0 —e— FaissIVFPOKMeans |
» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans
. . —8— PyTorchKMeansGPU
= Mean Computation: Unchanged gas T —- SiikitKMeans |
Experiment: 3 \ \,\ ‘
. . . © 41.0
* Baseline: Po.p.ular Lloyd implementations: u?'{ \ L \\
» CPU: scikit 8405 |2 LN e=3-e
» GPU: cuML, simple pytorch impl 2 \ \
* Suite of (CPU) ANNS data structures: 100 \
» PQ, SQ, IVF IVFPQ, HNSW \ *
* FAISS implementations 305 l

T T
100 200 300 400 500
Time(s)

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000

search (ANNS) data structure on the centroids. s —e— CuMLKMeans |

= Assignment: Use the data structure to assign each I ::::mi:’:&'\:f:::s
data point to its nearest centroid approximately. 2.0 —e— [FaissIVFPQKMekns. |

» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans

. —8— PyTorchKMeansGPU
= Mean Computation: Unchanged 415 T —e— ScikitkMeans |

Conclusions: \ \ ‘
\

= Dimension reduction (quantization) generally bad

AN
o .\'\‘1."‘0-!3*

WD
39.5 W

T T
100 200 300 400 500
Time(s)

Mean-Squared Error
B £y
o = [
w o
__——0
)
Lo—

S

o
i~

¢

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000

search (ANNS) data structure on the centroids. s —e— CuMLKMeans |

= Assignment: Use the data structure to assign each I ::::mi:’:&'\:f:::s
data point to its nearest centroid approximately. 2.0 —e— [FaissIVFPQKMekns. |

» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans

. —8— PyTorchKMeansGPU
= Mean Computation: Unchanged 415 T —e— ScikitkMeans |

Conclusions: \ \ ‘
41.0 ™

= Dimension reduction (quantization) generally bad

\.N
.\
* HNSW3 is really good! \,& o s )

WD
39.5 W

T T
100 200 300 400 500
Time(s)

Mean-Squared Error
iy
©
w

S

o
i~

¢

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Lloyd Iterations with a Black-box ANNS Data Structure

Alternative iteration approach:

= Build: Construct an approximate nearest neighbor Score over time in dpr5m_base with k=10000

search (ANNS) data structure on the centroids. s —e— CuMLKMeans |

= Assignment: Use the data structure to assign each I ::::mi:’:&'\:f:::s
data point to its nearest centroid approximately. 2.0 —e— [FaissIVFPQKMekns. |

» Make sure not to regress (compare assignments) \ —8— FaissIVFPQRKMeans

. —8— PyTorchKMeansGPU
= Mean Computation: Unchanged 415 T —e— ScikitkMeans |

Conclusions: \ \ ‘
41.0 ™

= Dimension reduction (quantization) generally bad

AN,
\ & h’\k‘!&*

= HNSW? is really good! K L
» Almost as good as Nvidia’s own GPU K\\ \

imlementation.*
.

T T
100 200 300 400 500
Time(s)

IS
o
5

Mean-Squared Error

S

o
i~

¢

!Borodin et al., Lower Bounds for High Dimensional Nearest Neighbor Search

2Liu, A strong lower bound for approximate nearest neighbor searching

3Malkov & Yashunin, Efficient and Robust [ANNS] Using Hierarchical Navigable Small World Graphs

“Raschka et al., Machine Learning in Python: Main developments and technology trends [...] 11/18


https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/j.ipl.2004.06.001
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/arXiv.2002.04803

Checkpoint 2

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

Basically out-of-core ANNS with n base points

'

k-Means Clustering

4/\

Exact NNS In-Memory ANNS

k base points k base points

. .

GPU Acceleration HNSW
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= Start with (approximate) NN graph = Start at arbitrary point on top level
= Prune edges with a heuristic = Greedy local search
= Randomly subsample points to get higher = “Seed” lower layers with result

layers (similar to skip list)

= Build/insertions also similar to skip list
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Seeded ANNS

Normal ANNS queries: given a query point, find a good close neighbor.

Seeded ANNS queries: also given seed points (candidate close neighbors).
Very simple learning-augmented form of ANNS.
Want:

= robustness — good solutions even if seed points bad

= consistency — better solutions if seed points good

In HNSW: Add seed points right at start of search on last level. Similar for other search-graph
methods (result: seeded search-graphs).
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Box HNSW

Main Improvements: Beating Black
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Main Improvements: Beating Black-Box HNSW
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Main Improvements: Beating Black-Box HNSW

Centroids “slow down” over time:

= Rebuilds (HNSW as a kind of kinetic data
structure, omitting details)
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Main Improvements: Beating Black-Box HNSW

Score over time in dpr5m_base with k=10000
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More Results
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Checkpoint 3

Out-of-Core Similarity Search
(used by your favourite semantic search engine)

Basically out-of-core ANNS with n base points
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Open

Problems

GPU-acceleration of SANNS? No current
methods for ANNS on GPU extend well.

Perfect consistency guarantees for SANNS in
fixed doubling dimension? Search-graph
methods don't seem to work.

General open ANNS problem: Better
theoretical understanding of why search-graphs
work well? Best known is (tunable) additive
approximation known for one specific graph
algorithm, with fixed doubling—dimensionl.

H
arxiv.org/abs/2502.06163
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