UNIVERSITY OF

Jack Spalding-Jamieson (Jack S-J) WATERLOO

jacksj@uwaterloo.ca W
D

Graph Morphing via Orthogonal Box Drawings

Joint work with my supervisors Therese Biedl and Anna Lubiw

Presentation as part of MMath degree, 2023

Introduction

Graph: vertex set V, edge set E C (\) (no multiedges, no self-loops)

2

1/43

k (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Graph: vertex set V, edge set E C (\2) (no multiedges, no self-loops)

Graph drawing: Representation of a graph on a plane
Planar graph drawing: Graph drawing where edges do not intersect

In

Vertices: Points Vertices: Points Vertices: Points
Edges: Line segments Edges: Polylines Edges: Orthogonal polylines

1/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Graph: vertex set V, edge set E C (\2) (no multiedges, no self-loops)

Graph drawing: Representation of a graph on a plane
Planar graph drawing: Graph drawing where edges do not intersect

In

Vertices: Points Vertices: Points Vertices: Points
Edges: Line segments Edges: Polylines Edges: Orthogonal polylines

Our graphs will always be planar graphs (planar drawing exists).

1/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

In

Planar straight-line drawing Planar poly-line drawing Planar orthogonal point drawing

Vertices are points.

2/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Jy (P uy

Planar straight-line drawing Planar poly-line drawing Planar orthogonal point drawing

Vertices are points.

Can be drawn on a grid.

3/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

—

Planar orthogonal box drawing
Vertices: Axis-aligned rectangles
Edges: Orthogonal polylines

4/43

k S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Planar orthogonal box drawing
Vertices: Axis-aligned rectangles
Edges: Orthogonal polylines

Can be drawn on a grid.

4/43

k S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Morph: Continuously deform between drawings

K jacksj@uwaterloo.ca)

Graph Morphing via Orthogonal Box Drawings

5/43
University of Waterloo, Computer Science

Morph: Continuously deform between drawings

t=20

D

Linear morph: Linearly interpolate vertex (and other) locations

k S-J (jacksj@uwaterloo.ca)

Graph Morphing via Orthogonal Box Drawings

5/43
University of Waterloo, Computer Science

Morph: Continuously deform between drawings

t=20

D

Morphs are always reversible!

k S-J (jacksj@uwaterloo.ca)

Linear morph: Linearly interpolate vertex (and other) locations

Graph Morphing via Orthogonal Box Drawings

5/43
University of Waterloo, Computer Science

Introduction

Planarity-Preserving Morph: At all times ¢, the “interpolated” drawing is also planar.

6/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Planarity-Preserving Morph: At all times ¢, the “interpolated” drawing is also planar.

Non-planarity-preserving morph:

A A A A 1
l |

I I

t=20 t =

\
_

6/43
k S-J (jacksj@uwaterloo.ca)

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Unidirectional linear morph: All movement directions are parallel.

Fact (Alamdari et al., Kleist et al.): Unidirectional linear morphs are planarity-preserving if and only if
every line parallel to the direction of movement has the same intersection order in both drawings.

Jack S-J (jacksj@uwaterloo.ca)

7/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

X—u %
P —
P =D Do D3 Dy=Q

The above are the explicit intermediate drawings.
Entire morph is represented by the sequence D1, D2, D3, Dy.

8/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

]] [1]
RN
P = D, Do D3 Dy=Q

Explicit drawings are on a grid.
Implicit (interpolated) drawings are not.

9/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Degenerate bend: Bend that “isn't used” (coincident or 180° angle).
Equivalent drawings: Drawings that differ only by degenerate bends.

10/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Input: Output:
"Compatible’ pair of drawings (labelled) Planarity-preserving linear morph sequence (list of drawings)
1 1]] 1 1

Objectives: Numerous!

11/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Input: ("Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends
Graph/Drawing linear size per Comput. Time
Class morphs side- edge Model Complexity
length
Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n?3)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n~logn)

12/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Input: ("Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends
Graph/Drawing linear size per Comput. Time
Class morphs side- edge Model Complexity
length
Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n?3)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n~logn)
Klemz (2021) 2-connected O(n) Expo. 0 Powerful O(n?)

12/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Input: ("Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends

Graph/Drawing linear size per Comput. Time

Class morphs side- edge Model Complexity
length

Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n3)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n~logn)

Klemz (2021) 2-connected O(n) Expo. 0 Powerful O(n?)
Lubiw & Petrick (2011) Straight-line On®) | On3) | O(n°) | Word RAM | Polynomial

12/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Input: ("Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends

Graph/Drawing linear size per Comput. Time

Class morphs side- edge Model Complexity
length

Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n3)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n~logn)

Klemz (2021) 2-connected O(n) Expo. 0 Powerful O(n?)
Lubiw & Petrick (2011) Straight-line On®) | On3) | O(n°) | Word RAM | Polynomial

This work (main result) Connected O(n) O(n) O(1) Word RAM O(n?)

12/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Introduction

Input: ("Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends

Graph/Drawing linear size per Comput. Time

Class morphs side- edge Model Complexity
length

Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n3)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n~logn)

Klemz (2021) 2-connected O(n) Expo. 0 Powerful O(n?)
Lubiw & Petrick (2011) Straight-line On®% | On3) | O(n®) | Word RAM | Polynomial

This work (main result) Connected O(n) O(n) O(1) Word RAM O(n?)
Bied| et al. (2013) Connected Orthogonal O(n?) O(n) O(n) Word RAM Polynomial
Van Goethem et al. (2022) Orthogonal O(n) Polynomial | O(1) Word RAM | Polynomial

This work (main method) Connected Ortho-Box O(n) O(n) O(1) Word RAM O(n?)

Grid size assumes input fits on the same grid.

Above table is not comprehensive.

12/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

First: Reduce straight-line drawing morphing
problem — orthogonal box drawing morphing
problem.

l Phase [

13/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

Second: Solve orthogonal box drawing morphing

First: Reduce straight-line drawing morphing problem using (improved) techniques for
problem — orthogonal box drawing morphing orthogonal point drawing morphing problem.
problem.

| Phase Ila t

l Phase [

@ El | Phsem e
! !
[~]

—

—
Phase 111

13/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

High-level: Reduce to box drawing morphs.
Need to do a morph, and give a reduction. 1 Phase | T

14/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

1 Phase Ila

High-level: Reduce to parallel box drawing
morphs (only lengths differ). Only need to
morph (not a different drawing type).

l Phase 1Tb & Tlc

ofto |— offo — oflo

15/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

High-level: Move ports. Add bends to do so. l Phase Ila T

16/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

] [+]

High-level: Do some (global) analysis on the edges.

17/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

] [

High-level: Use analysis to get rid of bends.

18/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

High-level: Use black-box result to morph parallel
orthogonal box drawings (i.e., adjust lengths).

_

Phase 111

19/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

[] []
| FllE || GhlE (e Bl
¥ = Phase I: Reduce to boxes.
= Phase lla: Edit ports.
Phase I Phase Ila Phase IIb & Ilc TPhase I1 #* Phase llb: Analyze edges.
= Phase llc: Globally "unify’.
= Phase Ill: Morph unified

—_| |- BEH drawings.

An example of all phases on a very simple drawing.

20/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Methodology

And now, details!

21/43

jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

High-level: Reduce to box drawing morphs.
Need to do a morph, and give a reduction.

Phase | Overview
1 Phase 1

= Input: Straight-line drawing pair

= Output: Box drawing pair
= Also need a reduction (morphing box E E E
drawings &~ morphing point drawings). ! !

] [£]

22/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

B0 B

Orthogonal box drawing Both Admitted poly-line drawing

23/43

waterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Morph of orthogonal box drawings = morph of admitted drawings

24/43
Jack

Graph Morphing via Orthogonal Box Drawings iversity of Waterloo, Computer Science

A planar straight-line drawing P. A visibility representation that An orthogonal box drawing,
can be computed from P. and corresponding admitted
drawing P’, which can both be
computed from P.

25/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

A planar straight-line drawing P. A visibility representation that An orthogonal box drawing,
can be computed from P. and corresponding admitted
drawing P’, which can both be
computed from P.

How do we actually perform a morph?

25/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Step 0
- .
e
L

Step 3
- S
\

L
Step 6

Jack jacksj@uwaterloo.ca)

Step 1

Step 4

Step 7

Graph Morphing via Orthogonal Box Drawings

Step 8
University of Waterloo, Computer Science

26/43

-
Step 15 2143
Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

High-level: Reduce to parallel box drawing
morphs (only lengths differ). Only need to [~ [f]
morph (not a different drawing type).
l Phase Ila T
Phase Il Overview | —
= Input: Orthogonal box drawing pair [
= Output: Parallel orthogonal box drawing
pair (for each edge: same port locations,]
same sequence of turns) -
% Substeps: | Phasemmene |
Phase lla: Adjust port locations
Phase llb: Global analysis — instructions L] L]
Phase llc: Instructions — local changes
]]

28/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

High-level: Reduce to parallel box drawing
morphs (only lengths differ). Only need to
morph (not a different drawing type).

l Phase Ila

Phase Il Overview

ofjo|— offo — ofo

= Input: Orthogonal box drawing pair

= Output: Parallel orthogonal box drawing
pair (for each edge: same port locations,
same sequence of turns)

- Sl | Phasem &1

Phase lla: Adjust port locations
Phase Ilb: Global analysis — instructions
Phase llc: Instructions — local changes

29/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

High-level: Move ports. Add bends to do so.

Phase lla Overview

* Input: Orthogonal box drawing pair l Phase Ila

= Output: Port-aligned orthogonal box
drawing pair (same relative port locations) L]

B | — B

30/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

D =D Do Doy
e e e :
by by by
L ' [\ L \ L
I Yo b 55
b P v|p b [b | |

31/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

High-level: Do some (global) analysis on the edges.

Phase IIb Overview

= Input: Port-aligned orthogonal box drawing pair

= Output: “Instructions”

Jack S-J (jacksj@uwaterloo.ca)

Phase IIb & Ilc

Graph Morphing via Orthogonal Box Drawings

[= Ee

32/43

University of Waterloo, Computer Science

+1

A
<

Spirality of the edge uv (oriented u to v): —1.

33/43

k (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

N

Difference in spirality of the edge uv (oriented u to v): —2.

34/43

k (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

N

Difference in spirality of the edge uv (oriented u to v): —2.

Goal: Reduce this to zero.

34/43

k (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Difference in spirality of the edge uv (oriented u to v): 0.

Goal: Reduce this to zero.

k (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings

35/43

University of Waterloo, Computer Science

XN |

Spirality changes! Net turns are added.
Don't know how to compute these drawings yet (happens in Phase llc).

36/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

-]

Spirality changes! Net turns are added.
Don't know how to compute these drawings yet (happens in Phase llc).

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that
difference in spirality becomes zero everywehere. This number is O(n) for each vertex.

36/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

-]

Spirality changes! Net turns are added.
Don't know how to compute these drawings yet (happens in Phase llc).

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that
difference in spirality becomes zero everywehere. This number is O(n) for each vertex.

Key difference/contribution: We use simultaneous twists, so only O(n) operations needed.

36/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

High-level: Use analysis to get rid of bends. |

Phase llc Overview |

» Input: Port-aligned orthogonal box drawing ~ ———

pair, simultaneous twist instructions l Phase I1b & Ilc
= Output: Parallel orthogonal box drawings
= Two components: [-]
Perform twists ‘
Obtain canonical drawings E

B | — B

37/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Two steps:
= "Prepare” drawing (make boxes square, well-spaced out)

= Twist everything simultaneously

38/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

: =l
I r

No zig-zags. One (vertical) zig-zag. Five zig-zags, three horizontal and two
vertical.

We want to remove zig-zags.

39/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Method by Biedl et al.:

This is a unidirectional morph.

40/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

|

=7

Emlumll]

=

Push each thing over if it lies to the right of the divider.

41/43

k S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

|

=7

Emlumll]

=

Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).

41/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

|

=7

Emlumll]

=

Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Solution/new contribution: O(1) morphs suffice, even on a grid (skipping details).

41/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Phase Il

High-level: Use black-box result to morph parallel
orthogonal box drawings (i.e., adjust lengths).

Phase Il Overview

= Input: Parallel orthogonal box drawing pair.

P eE—
Phase III '

ERERS

= Output: Linear morph sequence.
= Methodology: Appeal to black-box result by
Biedl et al.. It requires connectivity.

Essentially, add edges to both drawings (and
simplify again) until every face is a rectangle.

42/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusion

Graph/drawing | Num. linear Grid size Bends per Time
class morphs side-length edge complexity
Main result Connected O(n) O(n) O(1) O(n?)
Main method Connected Ortho-Box O(n) O(n) O(1) O(n?)
L} .
\ / - B%E - E—H—E - E—H—E
V Open problems:

= Seemingly approachable: Unidirectional
Phase I Phase Ila Phase IIb & Ilc TPha‘se 111 morphs only, max 4 bends, max 2 bends,
disconnected graphs.

. | s D N iﬂ s BEH = Big: No bends.

Fin.

43/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P’.
Want: Morph from P to P’. Bends need to be added.

M S = ldea 1: Use same y-coordinate
. ' . [. L = Problem: Not integer coordinates
,/ P ‘ o J .
—X
P P’ :

44/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusion

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P’.
Want: Morph from P to P’. Bends need to be added.

= ldea—t—Usesamey-coordinate
[. { L = ldea 2: Make them coincident with the vertex
L J | *= Possible problem: Not a unidirectional morph
L K' (complicated movement).
* = Alleviation: Perform the morph on one
vertex/edge at a time.
P P’

45/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Want to be able to bring a drawing to an O(n) x O(n) grid from an arbitrarily sized grid (where the
constant is independent of the initial grid size).

Idea: Sort z-coordinates.

This is a unidirectional morph.

46/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclus

Each problem has a different solution:
= Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.

47/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Each problem has a different solution:
= Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).

Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.
Two issues with their solution:

P Uses a large grid.
» Slow time complexity.

47/43

Jack jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclu

Each problem has a different solution:
= Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.

Two issues with their solution:

P Uses a large grid.
» Slow time complexity.

= Requires O(n) time for each zig-zag (want O(n) time for all zig-zags).

Use circuit layout compaction!

47/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusion

Goal: Compress vertical line segments.

Solution by Doenhardt and Lengauer:

—— o)

e /O -

‘ — | e ' ' A —
i —— ' ' ' g
— ! ! NN -—sl
*—>0 1
' ' —>9

—_— e

R —
-

>

(1) Input (2) Trapezoidal Map (3) Trapezoidal Graph (4) Result from

topological sort
Important note:

Last step of Doenhardt and Lengauer's algorithm only needs y-coordinates and trapezoidal graph.

48/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Goal: Compress a box drawing (again).

|

A box drawing C' A set of maximal vertical line The compressed drawing C’
segments L(C') covering C

Side note: Doing this in O(n) time requires connectivity (via an algorithm by Chazelle for trapezoidal
maps of simple polygons).

49/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Orthogonal Box Drawings Trapezoidal Maps Trapezoidal Graphs

‘, ,‘4, \7‘.\ Takeaway: The changes to the trapezoidal
Ll ‘a — L 7\T‘;>; graph are local to the zig-zag being
| /{'[3 | eliminated.
|

—lle

Zig-Zag Elimination

. ‘ ‘ L
‘ ‘ — L
S \/\
- L H s
[]\[
‘ ‘ A N
AR ‘
50/43

k jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Orthogonal Box Drawings

e
T
I
e
L.
|

Zig-Zag Elimination

Trapezoidal Maps

‘ ‘ ’

e L —

" "

— el

Jack S-J (jacksj@uwaterloo.ca)

Graph Morphing via Orthogonal Box Drawings

Trapezoidal Graphs

Takeaway: The changes to the trapezoidal
graph are local to the zig-zag being
eliminated.

Recall: Last step of Doenhardt and
Lengauer’s algorithm only needs
y-coordinates and trapezoidal graph.

50/43

University of Waterloo, Computer Science

Conclusi

Orthogonal Box Drawings Trapezoidal Maps

e
T
I
e
L.
|

Zig-Zag Elimination
‘ ‘ ’

e L —

‘. ‘.

— el

Jack S-J (jacksj@uwaterloo.ca)

Trapezoidal Graphs

Takeaway: The changes to the trapezoidal
graph are local to the zig-zag being
eliminated.

Recall: Last step of Doenhardt and
Lengauer’s algorithm only needs
y-coordinates and trapezoidal graph.

Idea: Compute only the trapezoidal graph
after a sequence of zig-zag eliminations.

50/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Orthogonal Box Drawings Trapezoidal Maps

e
T
I
e
L.
|

Zig-Zag Elimination
‘ ‘ ’

e L —

Trapezoidal Graphs

Takeaway: The changes to the trapezoidal
graph are local to the zig-zag being
eliminated.

Recall: Last step of Doenhardt and
Lengauer’s algorithm only needs
y-coordinates and trapezoidal graph.

Idea: Compute only the trapezoidal graph
after a sequence of zig-zag eliminations.

Final result: Can remove all horizontal zig-zags in one linear morph, in O(n) time.

Jack S-J (jacksj@uwaterloo.ca)

50/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusion

Eliminating all horizontal zig-zags # eliminating all zig-zags:

51/43

Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Eliminating all horizontal zig-zags # eliminating all zig-zags:

Eliminating all horizontal (and then vertical) zig-zags does reduce the number of bends per edge
(unless there are no zig-zags).

51/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusi

Eliminating all horizontal zig-zags # eliminating all zig-zags:

Eliminating all horizontal (and then vertical) zig-zags does reduce the number of bends per edge
(unless there are no zig-zags).

Idea: Since O(1) bends per edge is maintained, only need to do O(1) simultaneous eliminations to
eliminate all zig-zags.

51/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

Conclusion

Phase I1a ’—V Phase ITb
- |

Phase Ilc -

| .
—Current Drawmgs‘H——l_

|

1

Compress & Simplify| 1

] SR S !
I 1

1

1

Perform Twist —— Twisted Drawmgb‘

52/43

Jack S-J (jacksj@uwaterloo.ca) Graph Morphing via Orthogonal Box Drawings University of Waterloo, Computer Science

	Introduction
	Graphs and Drawings
	Morphs and Linear Morph Sequences
	Problem and Previous Results

	Methodology
	Phase I
	Phase II
	Phase IIb
	Phase IIc
	Phase IIc: Performing Twists
	Phase IIc: Compressions/Simplifications

	Phase III
	Conclusion

