
Polynomial-Time Algorithms for Contiguous Art Gallery and
Related Problems

Ahmad Biniaz, Anil Maheshwari, Magnus Christian Ring Merrild, Joseph S.B.
Mitchell, Saeed Odak, Valentin Polishchuk, Eliot W. Robson, Casper Moldrup

Rysgaard, Jens Kristian Refsgaard Schou, Thomas Shermer, Jack
Spalding-Jamieson, Rolf Svenning, Da Wei Zheng

SoCG June 2025



Combined work

The Contiguous Art Gallery Problem is Solvable in Polynomial Time,
- Merrild, Rysgaard, Schou & Svenning

Contiguous Boundary Guarding
- Biniaz, Maheshwari, Mitchell, Odak, Polishchuk & Shermer

The Analytic Arc Cover Problem and its Applications to Contiguous Art Gallery,
Polygon Separation, and Shape Carving

- Robson, Spalding-Jamieson & Zheng



Combined work

The Contiguous Art Gallery Problem is Solvable in Polynomial Time,
- Merrild, Rysgaard, Schou & Svenning

Contiguous Boundary Guarding
- Biniaz, Maheshwari, Mitchell, Odak, Polishchuk & Shermer

The Analytic Arc Cover Problem and its Applications to Contiguous Art Gallery,
Polygon Separation, and Shape Carving

- Robson, Spalding-Jamieson & Zheng



Combined work

The Contiguous Art Gallery Problem is Solvable in Polynomial Time,
- Merrild, Rysgaard, Schou & Svenning

Contiguous Boundary Guarding
- Biniaz, Maheshwari, Mitchell, Odak, Polishchuk & Shermer

The Analytic Arc Cover Problem and its Applications to Contiguous Art Gallery,
Polygon Separation, and Shape Carving

- Robson, Spalding-Jamieson & Zheng



Combined work

The Contiguous Art Gallery Problem is Solvable in Polynomial Time,
- Merrild, Rysgaard, Schou & Svenning

Contiguous Boundary Guarding
- Biniaz, Maheshwari, Mitchell, Odak, Polishchuk & Shermer

The Analytic Arc Cover Problem and its Applications to Contiguous Art Gallery,
Polygon Separation, and Shape Carving

- Robson, Spalding-Jamieson & Zheng



Art Gallery

∃R-complete
[Abrahamsen, Adamaszek Miltzow, 2021]



Art Gallery

∃R-complete
[Abrahamsen, Adamaszek Miltzow, 2021]



Art Gallery

∃R-complete
[Abrahamsen, Adamaszek Miltzow, 2021]



Art Gallery

∃R-complete
[Abrahamsen, Adamaszek Miltzow, 2021]



Art Gallery

∃R-complete
[Abrahamsen, Adamaszek Miltzow, 2021]



Art Gallery

∃R-complete
[Abrahamsen, Adamaszek Miltzow, 2021]



Boundary Guarding

∃R-complete
[Stade, SoCG25]



Boundary Guarding

∃R-complete
[Stade, SoCG25]



Boundary Guarding

∃R-complete
[Stade, SoCG25]



Boundary Guarding

∃R-complete
[Stade, SoCG25]



Boundary Guarding

∃R-complete
[Stade, SoCG25]



The Contiguous Art Gallery Problem

Goal: Guard boundary (few guards)

Restriction:

I Guards assigned to contiguous parts
of boundary

(Not allowed)



The Contiguous Art Gallery Problem

Goal: Guard boundary (few guards)

Restriction:

I Guards assigned to contiguous parts
of boundary

(Not allowed)



The Contiguous Art Gallery Problem

Goal: Guard boundary (few guards)

Restriction:

I Guards assigned to contiguous parts
of boundary

(Not allowed)



The Contiguous Art Gallery Problem

Goal: Guard boundary (few guards)

Restriction:

I Guards assigned to contiguous parts
of boundary

(Allowed)



Combinatorial Bounds

Normal art gallery/boundary guarding: need ≤ bn
3c guards.

Contiguous art gallery: need ≤ bn−2
2 c guards.



Combinatorial Bounds

Normal art gallery/boundary guarding: need ≤ bn
3c guards.

Contiguous art gallery: need ≤ bn−2
2 c guards.



Combinatorial Bounds

Normal art gallery/boundary guarding: need ≤ bn
3c guards.

Contiguous art gallery: need ≤ bn−2
2 c guards.



Combinatorial Bounds

Normal art gallery/boundary guarding: need ≤ bn
3c guards.

Contiguous art gallery: need ≤ bn−2
2 c guards.



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

“Take greedy steps”

G(x)

x0

x1

g1

g2 x2

g3

x3

g4

x4



The Greedy Algorithm

One revolution: O
(
n2 log(n)

)
time.

Guard count: OPT or OPT+1, depending on starting point.

Exact solution attainable?



The Greedy Algorithm

One revolution: O
(
n2 log(n)

)
time.

Guard count: OPT or OPT+1, depending on starting point.

Exact solution attainable?



The Greedy Algorithm

One revolution: O
(
n2 log(n)

)
time.

Guard count: OPT or OPT+1, depending on starting point.

Exact solution attainable?



Exact algorithms

Theorem (Main theorem)

The contiguous art gallery problem is solvable in polynomial time.
Poly-time on TM for rational coordinates in input. . .

but stated time complexities will be for real RAM.

Three different algorithms/methods.



Exact algorithms

Theorem (Main theorem)
The contiguous art gallery problem is solvable in polynomial time.

Poly-time on TM for rational coordinates in input. . .
but stated time complexities will be for real RAM.

Three different algorithms/methods.



Exact algorithms

Theorem (Main theorem)
The contiguous art gallery problem is solvable in polynomial time.
Poly-time on TM for rational coordinates in input. . .

but stated time complexities will be for real RAM.

Three different algorithms/methods.



Exact algorithms

Theorem (Main theorem)
The contiguous art gallery problem is solvable in polynomial time.
Poly-time on TM for rational coordinates in input. . .

but stated time complexities will be for real RAM.

Three different algorithms/methods.



Exact algorithms

Theorem (Main theorem)
The contiguous art gallery problem is solvable in polynomial time.
Poly-time on TM for rational coordinates in input. . .

but stated time complexities will be for real RAM.

Three different algorithms/methods.



Overview of Solutions

Three different algorithms/methods

Common element: Greedy steps

I Method 1: Perform more greedy steps
I Method 2: Select good candidate starting points
I Method 3: Try every starting point simultaneously



Overview of Solutions

Three different algorithms/methods

Common element: Greedy steps
I Method 1: Perform more greedy steps

I Method 2: Select good candidate starting points
I Method 3: Try every starting point simultaneously



Overview of Solutions

Three different algorithms/methods

Common element: Greedy steps
I Method 1: Perform more greedy steps
I Method 2: Select good candidate starting points

I Method 3: Try every starting point simultaneously



Overview of Solutions

Three different algorithms/methods

Common element: Greedy steps
I Method 1: Perform more greedy steps
I Method 2: Select good candidate starting points
I Method 3: Try every starting point simultaneously



Method 1: Repeated Greedy



Method 1: Repeated Greedy

x0



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2k

x2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



Method 1: Repeated Greedy

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



When to stop?

1. Repetition

2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x2

x3

xk−1

xk

xk+1

xk+2

xk+3

x2kx2k+1

x2k+2

x2k+3

x3k

x3k+1



When to stop?

1. Repetition

2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition

2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition

2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition

2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition

2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1

xNk+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1

xNk+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1

xNk+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.

O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



When to stop?

1. Repetition
2. xk , x2k , x3k , · · · → x1

3. xk+1, x2k+1, x3k+1, . . . pass x0

Guaranteed in O(n3OPT) revolutions.
O(n5OPT log n) runtime.

x0

x1

x3k

x2k
xk

xk+1

x2k+1
x3k+1 xNk+1



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points.

Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points. Try
them all!

Total running time: O(n6 log(n)).



Method 2: Using one findable Guard

Shows existance of optimal solutions,
with at least one guard at an incidence
point.

At most O(n3) incidence points. Try
them all!

Total running time: O(n6 log(n)).



Sketch of Proof



Sketch of Proof



Sketch of Proof



Sketch of Proof



Sketch of Proof



Sketch of Proof



Method 3: Closed-Form Analysis (“Analytic Arc Cover Framework”)
Idea: Find a closed form expression of greedy step G to evaluate
every starting point simultaneously.

G1

G2

G3

G1 =
ax + b
cx + d , G2 =

a′x + b′

c ′x + d ′ , G3 =
a′′x + b′′

c ′′x + d ′′ , . . .

Bounds: [a0 + b0
√c0, a1 + b1

√c1), [a1 + b1
√c1, a2 + b2

√c2), [a2 + b2
√c2, a3 + b3

√c3), . . .



Method 3: Closed-Form Analysis (“Analytic Arc Cover Framework”)
Idea: Find a closed form expression of greedy step G to evaluate
every starting point simultaneously.

G1

G2

G3

G1 =
ax + b
cx + d , G2 =

a′x + b′

c ′x + d ′ , G3 =
a′′x + b′′

c ′′x + d ′′ , . . .

Bounds: [a0 + b0
√c0, a1 + b1

√c1), [a1 + b1
√c1, a2 + b2

√c2), [a2 + b2
√c2, a3 + b3

√c3), . . .



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .

until G (k) exceeds a full loop somewhere.
Output: k

G

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .

until G (k) exceeds a full loop somewhere.
Output: k

GG

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .

until G (k) exceeds a full loop somewhere.
Output: k

G

G(2)

G

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .

until G (k) exceeds a full loop somewhere.
Output: k

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .

until G (k) exceeds a full loop somewhere.
Output: k

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .

until G (k) exceeds a full loop somewhere.
Output: k

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .
until G (k) exceeds a full loop somewhere.

Output: k

Need to test G (k) everywhere at once.



Using a closed form representation (“Analytic Arc Cover Framework”)
Input: Closed form expression for G

Algorithm: Repeatedly compose G with itself. . .
until G (k) exceeds a full loop somewhere.

Output: k

Need to test G (k) everywhere at once.



Analytic Arc Cover Framework: Benefits

I Only need to find one function

I Robust to some problem variants
I Also applicable to some other problems. . .



Analytic Arc Cover Framework: Benefits

I Only need to find one function
I Robust to some problem variants

I Also applicable to some other problems. . .



Analytic Arc Cover Framework: Benefits

I Only need to find one function
I Robust to some problem variants
I Also applicable to some other problems. . .



More problems: Line Segment/Polygon Separation
Input: A convex polygon and a set of line segments.

Output: A convex polygon separating the two, minimizing vertices.

Solvable with analytic arc cover framework!



More problems: Line Segment/Polygon Separation
Input: A convex polygon and a set of line segments.
Output: A convex polygon separating the two, minimizing vertices.

Solvable with analytic arc cover framework!



More problems: Line Segment/Polygon Separation
Input: A convex polygon and a set of line segments.
Output: A convex polygon separating the two, minimizing vertices.

Solvable with analytic arc cover framework!



More Problems: Min Half-Plane Carving
I What shapes can be carved from a large block of wood with

half-plane cuts? (solved at CCCG ’24)

I How many cuts are needed? (new)

Carveable:



More Problems: Min Half-Plane Carving
I What shapes can be carved from a large block of wood with

half-plane cuts? (solved at CCCG ’24)
I How many cuts are needed? (new)

Carveable:



More Problems: Min Half-Plane Carving
I What shapes can be carved from a large block of wood with

half-plane cuts? (solved at CCCG ’24)
I How many cuts are needed? (new)

Carveable:



More Problems: Min Half-Plane Carving

Uncarveable:



Min Half-Plane Cutting: Reducing to 2D

I Minimizing in 3D → Minimizing (many) in 2D

I Reduction to line segment/polygon separation



Min Half-Plane Cutting: Reducing to 2D

I Minimizing in 3D → Minimizing (many) in 2D
I Reduction to line segment/polygon separation



Future Work

Faster runtime:

I Almost linear runtime for greedy revolution
I Way fewer revolutions for Method 1

Other variants:

I Higher dimensional galleries.
I Each guard guards at most m polygonal arcs.



Future Work

Faster runtime:

I Almost linear runtime for greedy revolution
I Way fewer revolutions for Method 1

Other variants:

I Higher dimensional galleries.
I Each guard guards at most m polygonal arcs.



Future Work

Faster runtime:
I Almost linear runtime for greedy revolution

I Way fewer revolutions for Method 1
Other variants:

I Higher dimensional galleries.
I Each guard guards at most m polygonal arcs.



Future Work

Faster runtime:
I Almost linear runtime for greedy revolution
I Way fewer revolutions for Method 1

Other variants:

I Higher dimensional galleries.
I Each guard guards at most m polygonal arcs.



Future Work

Faster runtime:
I Almost linear runtime for greedy revolution
I Way fewer revolutions for Method 1

Other variants:

I Higher dimensional galleries.
I Each guard guards at most m polygonal arcs.



Future Work

Faster runtime:
I Almost linear runtime for greedy revolution
I Way fewer revolutions for Method 1

Other variants:
I Higher dimensional galleries.

I Each guard guards at most m polygonal arcs.



Future Work

Faster runtime:
I Almost linear runtime for greedy revolution
I Way fewer revolutions for Method 1

Other variants:
I Higher dimensional galleries.
I Each guard guards at most m polygonal arcs.



Thank you 1

1Also Jack is looking for PhD positions. . .


