Jack Spalding-Jamieson (Jack S-J) jacksj@uwaterloo.ca

Independent

The Analytic Arc Cover Problem and its Applications to Contiguous Art Gallery, Polygon Separation, and Shape Carving

Joint work with Eliot Robson and Da Wei Zheng

Contiguous Art Gallery

Contiguous Art Gallery

Other Problems: Half-Plane Carving

Other Problems: Line Segment/Convex Polygon Separation by a Polygon

Arc Cover

Arc Cover

Arc Cover

Greedy Next-Generator — Function

Greedy next-generator is a <u>function</u>. It can even be computed in polynomial time! Need something stronger: Piecewise linear rational representation

Next-Generator with Piecewise Linear Rational Representation

$$f_1 = \frac{ax+b}{cx+d}$$
, $f_2 = \frac{a'x+b'}{c'x+d'}$, $f_3 = \frac{a''x+b''}{c''x+d''}$

Bounds: $[a_0 + b_0\sqrt{c_0}, \ a_1 + b_1\sqrt{c_1}), \ [a_1 + b_1\sqrt{c_1}, a_2 + b_2\sqrt{c_2}), \ [a_2 + b_2\sqrt{c_2}, a_3 + b_3\sqrt{c_3}), \dots$

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

 $\textbf{Output:}\ k$

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

Input: f (as a piecewise linear rational function)

 $\label{eq:Algorithm: Compose } f \text{ with itself until } f^{(k)} \text{ exceeds a full loop somewhere.}$

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

Input: f (as a piecewise linear rational function)

 $\label{eq:Algorithm: Compose } f \text{ with itself until } f^{(k)} \text{ exceeds a full loop somewhere.}$

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

Input: f (as a piecewise linear rational function)

Algorithm: Compose f with itself until $f^{(k)}$ exceeds a full loop somewhere.

Output: k

Need to test $f^{(k)}$ everywhere.

Computing a piecewise linear rational function: Contiguous Art Gallery

Input: Left Output: Right

Computing a piecewise linear rational function: Contiguous Art Gallery

Input: Left Output: Right

Useful lemma: the min or max of piecewise linear rational functions is piecewise linear rational (other good properties too)

Computing a piecewise linear rational function: Contiguous Art Gallery

Computing a piecewise linear rational function: Contiguous Art Gallery (1a)

Computing a piecewise linear rational function: Contiguous Art Gallery (1a)

The points x_1 and x_2 restrict.

Computing a piecewise linear rational function: Contiguous Art Gallery (1b)

Computing a piecewise linear rational function: Contiguous Art Gallery (2)

Computing a piecewise linear rational function: Contiguous Art Gallery (3)

Boundary guards suffice! Even with points $\{x\}$

Computing a piecewise linear rational function: Contiguous Art Gallery (4)

Combine across all edge pairs:

Done all construction steps (not all proof steps)!

Line Segment Separation via Polygon

Line Segment Separation via Convex Polygon

Separating polygon $Q \to \operatorname{convex}$ separating polygon Q'

Line Segment Separation: Next-generator

Line Segment Separation: Next-generator Piecewise Linear Rational

Min Half-Plane Cutting

Min Half-Plane Cutting

NO:

Half-Plane Cutting: Reducing to 2D

Minimizing in 3D \rightarrow Minimizing (many) in 2D

Half-Plane Cutting: Reducing to 2D

Minimizing in 3D \rightarrow Minimizing (many) in 2D

Becomes line segment separation