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Problem Statement

Input: A straight-line drawing of a graph G = (V ,E ).

Output: A partition of G into plane subgraphs (COLOURS).

Goal: Minimize the number of subgraphs.
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Reduction to Vertex Colouring

Construct a conflict graph G ′:

• V (G ′) := E (G )

• E (G ′) := the pairwise intersections of the straight-line edges.
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Approach - Overview

Two main components:

1. (Very basic) Initialization

2. Optimization

• Conflict-Based Local Search

• Alternative heuristics
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Initialization

The simplest initialization strategy is:

• Start with all the edges uncoloured.

• Loop through the straight-line edges.

• For each one, colour it the minimum colour that doesn’t conflict with any of its

neighbours in the conflict graph.

Good orderings of the edges:

• Sorted by slope.

• Sorted by decreasing order of degree in the conflict graph (Welsh and Powell. 1967).
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Optimization - Conflict-Based Local Search

Conflict-Based Local Search/Conflict Optimization

• Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

• Very broad idea, can be applied this year as well.

Main idea:

• Eliminate an entire colour class without giving the edges a new colour.

• Try to colour each uncoloured edge while minimizing a conflict score, i.e. a heuristic.

• Uncolour the conflicting edges when colouring the edge.
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Optimization Example (1)
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Optimization Example (4)

Step 1: Eliminate a Colour
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Optimization Example (5)

Choose blue to eliminate
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Optimization Example (6)

Uncolour all blue edges
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Optimization Example (7)

Look at an uncoloured edge
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Optimization Example (8)

Pick a new colour according to a “conflict score” heuristic

Choose orange
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Optimization Example (9)

Colour the edge and uncolour all conflicting edges
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Optimization Example (10)

If there is one: Look at an uncoloured edge
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Optimization Example (11)

Pick a new colour according to a “conflict score” heuristic

Choose green
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Optimization Example (12)

Pick a new colour according to a “conflict score” heuristic

Choose green
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Optimization Example (13)

One colour down!
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Optimization Example (14)

Let’s try to eliminate another one: Purple
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Optimization Example (15)

Uncolour all the purple edges
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Optimization Example (16)

Look at an uncoloured edge
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Optimization Example (17)

Choose a colour based on a “conflict score”

Choose red
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Optimization Example (18)

Colour the edge red and uncolour any conflicting edges

(none in this case)
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Optimization Example (19)

Look at another uncoloured edge
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Optimization Example (20)

Choose a colour for it based on conflict score

Choose red

24



Optimization Example (21)

Colour the edge red and uncolour any conflicting edges
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Optimization Example (22)

Look at an uncoloured edge
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Optimization Example (23)

Choose a colour based on a “conflict score”

Choose green
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Optimization Example (24)

Colour the edge green and uncolour any conflicting edges
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Optimization Example (25)

Look at an uncoloured edge
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Optimization Example (26)

Choose a colour based on a “conflict score”

Choose green
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Optimization Example (27)

Colour the edge green and uncolour any conflicting edges
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Optimization Example (28)

Look at an uncoloured edge
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Optimization Example (29)

Choose a colour based on a “conflict score”

Choose red
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Optimization Example (30)

Colour the edge red and uncolour any conflicting edges
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Optimization Example (31)

Done!
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Optimization - Heuristics

Conflict score: ∑
e′∈Ci

(e′,e)∈E(G ′)

1 + q(e′)2

q(e′) is the number of times e′ was uncoloured.

Alternative: ∑
e′∈Ci

(e′,e)∈E(G ′)

1
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Comparison to Vertex Colouring Approaches

Figure 1: 10 minutes of our algorithm versus standard approaches on dimacs graph colouring instances.
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Thank you for listening

Thank you organizers for hosting the challenge!

Our code is available at: https://github.com/jacketsj/cgshop2022-gitastrophe
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