
Conflict-Based Local Search for Minimum Partition into

Plane Subgraphs

CG Challenge 2022, Team gitastrophe

Jack Spalding-Jamieson, Brandon Zhang, Da Wei (David) Zheng

2022/06/09



Standings

1



Problem Statement

Input: A straight-line drawing of a graph G = (V ,E ).

Output: A partition of G into plane subgraphs (COLOURS).

Goal: Minimize the number of subgraphs.

2



Reduction to Vertex Colouring

Construct a conflict graph G ′:

• V (G ′) := E (G )

• E (G ′) := the pairwise intersections of the straight-line edges.

3



Approach - Overview

Two main components:

1. (Very basic) Initialization

2. Optimization

• Conflict-Based Local Search

• Alternative heuristics

4



Initialization

The simplest initialization strategy is:

• Start with all the edges uncoloured.

• Loop through the straight-line edges.

• For each one, colour it the minimum colour that doesn’t conflict with any of its

neighbours in the conflict graph.

Good orderings of the edges:

• Sorted by slope.

• Sorted by decreasing order of degree in the conflict graph (Welsh and Powell. 1967).

5



Optimization - Conflict-Based Local Search

Conflict-Based Local Search/Conflict Optimization

• Initially used by was used by team Shadoks in CG:SHOP 2021 (Crombez et al. 2021).

• Very broad idea, can be applied this year as well.

Main idea:

• Eliminate an entire colour class without giving the edges a new colour.

• Try to colour each uncoloured edge while minimizing a conflict score, i.e. a heuristic.

• Uncolour the conflicting edges when colouring the edge.

6



Optimization Example (1)

7



Optimization Example (4)

Step 1: Eliminate a Colour

8



Optimization Example (5)

Choose blue to eliminate

9



Optimization Example (6)

Uncolour all blue edges

10



Optimization Example (7)

Look at an uncoloured edge

11



Optimization Example (8)

Pick a new colour according to a “conflict score” heuristic

Choose orange

12



Optimization Example (9)

Colour the edge and uncolour all conflicting edges

13



Optimization Example (10)

If there is one: Look at an uncoloured edge

14



Optimization Example (11)

Pick a new colour according to a “conflict score” heuristic

Choose green

15



Optimization Example (12)

Pick a new colour according to a “conflict score” heuristic

Choose green

16



Optimization Example (13)

One colour down!

17



Optimization Example (14)

Let’s try to eliminate another one: Purple

18



Optimization Example (15)

Uncolour all the purple edges

19



Optimization Example (16)

Look at an uncoloured edge

20



Optimization Example (17)

Choose a colour based on a “conflict score”

Choose red

21



Optimization Example (18)

Colour the edge red and uncolour any conflicting edges

(none in this case)

22



Optimization Example (19)

Look at another uncoloured edge

23



Optimization Example (20)

Choose a colour for it based on conflict score

Choose red

24



Optimization Example (21)

Colour the edge red and uncolour any conflicting edges

25



Optimization Example (22)

Look at an uncoloured edge

26



Optimization Example (23)

Choose a colour based on a “conflict score”

Choose green

27



Optimization Example (24)

Colour the edge green and uncolour any conflicting edges

28



Optimization Example (25)

Look at an uncoloured edge

29



Optimization Example (26)

Choose a colour based on a “conflict score”

Choose green

30



Optimization Example (27)

Colour the edge green and uncolour any conflicting edges

31



Optimization Example (28)

Look at an uncoloured edge

32



Optimization Example (29)

Choose a colour based on a “conflict score”

Choose red

33



Optimization Example (30)

Colour the edge red and uncolour any conflicting edges

34



Optimization Example (31)

Done!

35



Optimization - Heuristics

Conflict score: ∑
e′∈Ci

(e′,e)∈E(G ′)

1 + q(e′)2

q(e′) is the number of times e′ was uncoloured.

Alternative: ∑
e′∈Ci

(e′,e)∈E(G ′)

1

36



Optimization - Heuristics

Conflict score: ∑
e′∈Ci

(e′,e)∈E(G ′)

1 + q(e′)2

q(e′) is the number of times e′ was uncoloured.

Alternative: ∑
e′∈Ci

(e′,e)∈E(G ′)

1

36



Comparison to Vertex Colouring Approaches

Figure 1: 10 minutes of our algorithm versus standard approaches on dimacs graph colouring instances.
37



Thank you for listening

Thank you organizers for hosting the challenge!

Our code is available at: https://github.com/jacketsj/cgshop2022-gitastrophe

38


