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Problem The Algorithm
k-means on ‘arge h]gh—d]mengigna‘ Input: P C R, centers C c RY, |C| = k, previous multi-assignments
) ] S - P — 2 previous search-graph data structure D
datasets is slow for blg k! Build: Build a new search-graph data structure D’ by using D.
Reassign:
- ' ] for each chunk U of O(k) points in P (in parallel) do
Existing Approach: LLoyd's Algorithm Group the points of U into roughly-correlated groups.
Randomly project each group into RY, and sort the projected group.
Initialize A set of k centers C by uniform sampling from P. for each group G of U do

for each point p of G, in the sorted order do
Let g be the previous point.
Use S’(q) U S(p) as seeds.

2. Assign each point P to its closest center. |Bottleneck
Terminate if no changes.

3. Recompute cluster centers C; as mean of assigned points. Go to With all these seeds, compute the seeded approximate ~ 10
step 2. nearest centers of p using D', and save the results as S’(p).
end for
end for

Easy Idea: ANNS for Assignments

end for
Recompute: Compute the new centers C’ as centroids.
Output: New centers C’, new multi-assignments S/, new search-

1. Initialize A set of k centers C' by uniform sampling from P.

Build an in-memory ANNS data structure over C. eraph data structure D’
3. Assign each point P to its approximate closest center. Terminate

F:no changes. Why does this work?
4. Recompute cluster centers C; as mean of assigned points. Go to

= Centroids slow down over time:

step 2.

Our Solution: Seeded Approximate Nearest-Neighbor
Search (SANNS)

= For each query, given initial guesses (called seeds) for candidate
nearest neighbors.

= Learning-augmented form of ANNS.

= More appropriate family of problems to study for k-means
acceleration: Seeds come from previous iteration.

= Present a framework of solutions to SANNS that we call seeded
search-graphs.

= Result: Seeded search-graphs for k-means clustering (SHEESH).
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