Scalable i-Means Clustering for Large % via Seeded
Approximate Nearest-Neighbor Search

Jack Spalding-Jamieson Eliot Robson Da Wel Zheng
(Independent) (UIUC) (UIUC)
Problem The Algorithm
k-means on ‘arge h]gh—d]mengigna‘ Input: P C R, centers C c RY, |C| = k, previous multi-assignments
)] S - P — 2 previous search-graph data structure D
datasets is slow for blg k! Build: Build a new search-graph data structure D’ by using D.
Reassign:
- '] for each chunk U of O(k) points in P (in parallel) do
Existing Approach: LLoyd's Algorithm Group the points of U into roughly-correlated groups.
Randomly project each group into RY, and sort the projected group.
Initialize A set of k centers C by uniform sampling from P. for each group G of U do

for each point p of G, in the sorted order do
Let g be the previous point.
Use S’(q) U S(p) as seeds.

2. Assign each point P to its closest center. |Bottleneck
Terminate if no changes.

3. Recompute cluster centers C; as mean of assigned points. Go to With all these seeds, compute the seeded approximate ~ 10
step 2. nearest centers of p using D', and save the results as S’(p).
end for
end for

Easy Idea: ANNS for Assignments

end for
Recompute: Compute the new centers C’ as centroids.
Output: New centers C’, new multi-assignments S/, new search-

1. Initialize A set of k centers C' by uniform sampling from P.

Build an in-memory ANNS data structure over C. eraph data structure D’
3. Assign each point P to its approximate closest center. Terminate

F:no changes. Why does this work?
4. Recompute cluster centers C; as mean of assigned points. Go to

= Centroids slow down over time:

step 2.

Our Solution: Seeded Approximate Nearest-Neighbor
Search (SANNS)

= For each query, given initial guesses (called seeds) for candidate
nearest neighbors.

= Learning-augmented form of ANNS.

= More appropriate family of problems to study for k-means
acceleration: Seeds come from previous iteration.

= Present a framework of solutions to SANNS that we call seeded
search-graphs.

= Result: Seeded search-graphs for k-means clustering (SHEESH).

Datasets
. . - 57500 —&— sheesh [a] 0.390 - —&— sheesh [a]
Dataset Type | Dim | Points Size -
i < 57000 —0— torch[gpu] _ —0— torch[gpu]
SIFTZOM Image 128 | 20 mil. | 10.24 GB g —8— hnsw [a] Ct) 0.385 —8— hnsw [a]
Fext2lmagelOM | Image | 200 | 10 mil. | 8.00 GB " 56500 ~o— hnsw [b] - 0 380 —o— hnsw [b]
DPR5M Text | 768 | 5mil. | 15.36 GB S 6000 —e— scikit* 2 —e— scikit*
> = 0.375
1 55500 wn
© & 0.370
v 55000 v
= =
54500 0.365
Results with ANNS Methods 54000 | 0.360 - . . . j |
0 100 200 300 400 500 0 100 200 300 400 500
Score over time in dpr5m_base with k=10000 Time(s) Time(s)
425 —0— CuMLKMeans
) —0— FaissHNSWKM
o |FaiseVLFIxtkMbane SIFT20M, k = 10000 Fext2image10M, k = 50000
42.0 —8— FaissIVFPQKMeans
—O— FaissIVFPQRKMeans
O —®— PyTorchKM GPU o
é’ 41.5 —— SZiISiET(Meaizns sheesh [a]
= _ 415 —o— torch[gpu]
5 41.0 2 —8— hnsw [a]
§ _"'; 41.0 —0— hnsw [b]
§4o.5 % —@— scikit
-
40.0 z 40.5
-
39.5 o 40.0
=
100 200 300 400 500 39.5 -
Time(s)
Comparison of “Easy Idea” with ANNS methods in FAISS 0 100 200 300 400 500
versus baselines PyTorch, CuML, and Scikit. Time(s)

DPR5m, £ = 100000

arxiv.org/pdf/2502.06163 github.com/jacketsj/mopbucket VecDB®ICML 2025, Vancouver, BC, Canada

https://arxiv.org/pdf/2502.06163
https://github.com/jacketsj/mopbucket

