
Scalable k-Means Clustering for Large k via Seeded
Approximate Nearest-Neighbor Search

Jack Spalding-Jamieson
(Independent)

Eliot Robson
(UIUC)

Da Wei Zheng
(UIUC)

Problem

k‐means on large high‐dimensional
datasets is slow for big k!

Existing Approach: LLoyd’s Algorithm

1. Initialize A set of k centers C by uniform sampling from P .
2. Assign each point P to its closest center. Bottleneck

Terminate if no changes.
3. Recompute cluster centers Ci as mean of assigned points. Go to

step 2.

Easy Idea: ANNS for Assignments

1. Initialize A set of k centers C by uniform sampling from P .
2. Build an in‐memory ANNS data structure over C .
3. Assign each point P to its approximate closest center. Terminate

if no changes.
4. Recompute cluster centers Ci as mean of assigned points. Go to

step 2.

Our Solution: Seeded Approximate Nearest-Neighbor
Search (SANNS)

For each query, given initial guesses (called seeds) for candidate
nearest neighbors.
Learning‐augmented form of ANNS.
More appropriate family of problems to study for k‐means
acceleration: Seeds come from previous iteration.
Present a framework of solutions to SANNS that we call seeded
search‐graphs.
Result: Seeded search‐graphs for k‐means clustering (SHEESH).

The Algorithm

Input: P ⊂ Rd, centers C ⊂ Rd, |C| = k, previous multi‐assignments
S : P → 2C , previous search‐graph data structure D
Build: Build a new search‐graph data structure D′ by using D.
Reassign:
for each chunk U of O(k) points in P (in parallel) do
Group the points of U into roughly‐correlated groups.
Randomly project each group intoR1, and sort the projected group.
for each group G of U do
for each point p of G, in the sorted order do
Let q be the previous point.
Use S′(q) ∪ S(p) as seeds.
With all these seeds, compute the seeded approximate ∼ 10
nearest centers of p using D′, and save the results as S′(p).

end for
end for

end for
Recompute: Compute the new centers C ′ as centroids.
Output: New centers C ′, new multi‐assignments S′, new search‐
graph data structure D′

Why does this work?
Centroids slow down over time:

Datasets

Dataset Type Dim Points Size
SIFT20M Image 128 20 mil. 10.24 GB

Text2Image10M Image 200 10 mil. 8.00 GB
DPR5M Text 768 5 mil. 15.36 GB

Results with ANNS Methods

100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

42.0

42.5

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

Score over time in dpr5m_base with k=10000

CuMLKMeans

FaissHNSWKMeans

FaissIVFFlatKMeans

FaissIVFPQKMeans

FaissIVFPQRKMeans

PyTorchKMeansGPU

ScikitKMeans

Comparison of “Easy Idea” with ANNS methods in FAISS
versus baselines PyTorch, CuML, and Scikit.

Results with Our Seeded ANNS Method (SHEESH)

0 100 200 300 400 500
Time(s)

54000

54500

55000

55500

56000

56500

57000

57500

M
ea

n-
Sq

ua
re

d
Er

ro
r

sheesh [a]
torch[gpu]
hnsw [a]
hnsw [b]
scikit*

SIFT20M, k = 10000

0 100 200 300 400 500
Time(s)

0.360

0.365

0.370

0.375

0.380

0.385

0.390

M
ea

n-
Sq

ua
re

d
Er

ro
r

sheesh [a]
torch[gpu]
hnsw [a]
hnsw [b]
scikit*

Text2Image10M, k = 50000

0 100 200 300 400 500
Time(s)

39.5

40.0

40.5

41.0

41.5

M
ea

n-
Sq

ua
re

d
Er

ro
r

sheesh [a]
torch[gpu]
hnsw [a]
hnsw [b]
scikit

DPR5m, k = 100000

arxiv.org/pdf/2502.06163 github.com/jacketsj/mopbucket VecDB@ICML 2025, Vancouver, BC, Canada

https://arxiv.org/pdf/2502.06163
https://github.com/jacketsj/mopbucket

