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Abstract

A set of n non-overlapping rectangular ‘battleships’ with unit width are placed on anH×W 2D square grid
uniformly at random. Given the state of an in-progress game, and an initial assumption of uniform probability
over all legal configurations of the ships, our goal is to determine the probability that each square contains a ship.
We describe and implement a practical solution to this problem, and extend our implementation to run on GPU.
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1 Introduction

Battleship is a game played between two people. Each player starts by placing ‘ships’ into hidden locations on a 2D
square grid unique to their own ships, and then players take turns attempting to ‘attack’ locations on the others’ grid.

In [4], Fiat and Shamir describe an overarching strategy that bounds the worst-case number of attacks required,
in the case of one ship. In this paper, we attempt to evaluate local choices within a game of battleship. Our
goal is to quickly compute the exact probability of striking a ship with an attack, for each possible next choice of
square point to attack. A method for computing or estimating these probabilities has previously been explored [3],
but it is much slower than the techniques described here.

1.1 Probability Queries

We consider only one side in the game of battleship. A defending player places n unit-width ships S={s1,...,sn}
with lengths L={l1,...,ln} onto an H×W square grid, such that no two ships occupy the same grid square. Note
that we allow the ships to touch, but we will not make special use of this fact. An attacking player is allowed
to perform queries, called attacks on squares, with at most one query per square. Each query on a square r
has three possible responses.
If the attack missed, there is no ship at the sqaure.
If the attack hit, there is a ship at the square, and some part of the ship remains undiscovered.
If the attack sunk, there is a ship at the square, and all parts of the ship have now been discovered. The

specific ship itself is identified in the query response, which we say has been sunk at square r.
The attacking player wishes to minimize the number of queries needed to sink all ships.
In this work we attempt to practically solve the following problem: Assume the ships were placed using a

uniform distribution over all possible legal configurations of ship placements. Given a series of queries made
by the attacker so far, and their responses, determine the probability that each square of the grid contains a ship.

2 Cliques and the Placement Graph

For a set of ships L and a grid size H×W , we construct placement graph G1 with the following vertices and
edges: For each ship s, and each possible placement p of s onto the grid (a location and orientation), create a
vertex vs,p. Create an edge for each pair of vertices vs,p,vs′,p′ with s 6=s′ where s placed at p would not intersect
with s′ placed at p′. The configurations of all ships correspond to n-cliques in G which cover all squares of the
grid that have received hit responses.
Then, given a list of queries and responses so far, we can construct the valid placement subgraph G2

which is an induced subgraph of G1 with the vertices vs,p such that:
• No square r that has received a miss response is inside the placement p of s.
• If a ship s has already been sunk at a square r, then vs,p covers only r and squares which received hit
responses prior to the sunk response of r.
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Figure 1: Left: A configuration of ships on the 10×10 grid. Right: The same
configuration after some attacks. The 6 × symbols are misses. The 4 empty
circles are hits. The filled circle with a 0 inside is a sink of ship 0. Note that
the order of the attacks is not specified here.

Figure 2: For a 3×3 board with
L= {2,3}, the above diagram
represents a small subgraph of
G1.

Using the valid placement subgraph, we can compute our probabilities with a simple algorithm. Let h(vs,p)
be the number of hit squares s touches, and let H be the total number of hit squares. We iterate through all
n-cliques C of G2. If

∑
v∈Ch(v)=H, then C corresponds to a valid configuration of all ships given all the

information we have. For each vertex vs,p, we let fvs,p denote the number of valid configurations containing
the ship s in placement p. Finally, the total number of valid configurations covering a square r is the sum of fvs,p
over all placements p of a ship s that overlap with r. This value is sufficient to compute the exact probability
that r appears in a configuration, by dividing by the total number of valid configurations.

3 Clique Iteration and Performance Engineering
The primary performance bottleneck of this approach is the iteration through all n-cliques. Bron and Kerbosch
describe a method for iterating through all maximal cliques of general graphs [2]. However, for our n-partite
graph, this can be done much more quickly with a simple recursive approach: Iterate through all placements
p1 of s1. Inside the iteration of p1, iterate through all placements p2 of s2 which do not conflict with the current
placement of s1. Inside the iteration of p2, iterate through all placements p3 of s3 which do not conflict with
the current placements of s2 or s1. And so on. This pattern can be implemented as a simple recursive function.

An implementation of our simple recursive approach can be refined for much better real-time performance: For
each ship si, a set Vi of placements of si which do not intersect with the current placements of ships s1,s2,...,si−1
can be maintained. Furthermore, these sets can be updated quickly too: For each pair of ships si and sj with i<j,
and every pair of placement pi of si, we can compute a set Bi,pi,j of placements of j which do not overlap pi. Note
that all such sets can be computed prior to the n-clique iteration, and that in practice the computation of these sets
is negligible. When choosing a placement pi for a ship si, each set Vj for j>i can now be updated by performing the
operation Vj←Vj∩Bi,pi,j By storing each Vi as a bitset, this operation can be performed extremely fast in practice.
This algorithm can also be adapted for a GPU: Pre-compute the first few levels of recursion on CPU, and

compute the remaining levels in parallel on GPU.

4 Experimental Results
We evaluated our implementation on the version of the game with n=5, L={5,4,3,3,2}, and H×W=10×10.
The input with the most valid configurations is the empty board, so it provides an upper bound on performance.
We tested on an AMD Ryzen 5 1400 CPU and an NVIDIA RTX 3080 GPU. Our basic single-threaded CPU
implementation was able to solve the empty board in 146.37s. Our parallelized implementation using hipSYCL [1]
completed in 5.70s on GPU, and in 36.36s using 8 CPU threads.
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